Skip to main content
Log in

Photocatalytic degradation of organic contaminants by magnetic Ag3PO4/MFe2O4 (M = Zn, Ni, Co) composites: a comparative study and a new insight into mechanism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A two-step hydrothermal method was used to synthesize Ag3PO4/MFe2O4 (M = Zn, Ni, Co) composites, which were characterized in detail and employed as the visible light-response catalysts in the removal of different organic pollutants such as methyl orange (MO), methylene blue (MB), tetracycline (TC), and levofloxacin (LVF). Compared with Ag3PO4/ZnFe2O4 and Ag3PO4/NiFe2O4, Ag3PO4/CoFe2O4 showed a higher photocatalytic performance because of its larger BET surface area and higher separation rate of charge carriers. After exposure to visible light for 40 min, the efficiency of MO degradation by optimized Ag3PO4/CoFe2O4 reached 94.8%, and the degradation efficiency of MB, TC, and LVF was 99.0%, 80.5%, and 75.5% after 60 min, respectively. Only MO was selected as the target contaminant, the visible light-driven catalytic activity of Ag3PO4/CoFe2O4 was slightly higher than that of pure Ag3PO4. The magnetic Ag3PO4/CoFe2O4 can be easily recovered and its recyclability was superior to bare Ag3PO4. Due to the narrow bandgap of MFe2O4 (M = Zn, Ni, Co), the photoexcited holes and electrons cannot transfer to the surface of MFe2O4 and participate in photocatalytic reaction, thus the reactive species generated in Ag3PO4/MFe2O4 suspension were derived only from irradiated Ag3PO4. This study provided a new insight into the photocatalytic mechanism of Ag3PO4/MFe2O4 (M = Zn, Ni, Co).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 1

Similar content being viewed by others

References

  1. F. Chen, Q. Yang, X.M. Li, G.M. Zeng, D.B. Wang, C.G. Niu, J.W. Zhao, H.X. An, T. Xie, Y.C. Deng, Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4(040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Appl. Catal. B Environ. 200, 330–342 (2017)

    Article  CAS  Google Scholar 

  2. H. Katsumata, T. Sakai, T. Suzuki, S. Kaneco, Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light. Ind. Eng. Chem. Res. 53, 8018–8025 (2014)

    Article  CAS  Google Scholar 

  3. J. Luo, X.S. Zhou, L. Ma, L.M. Xu, X.Y. Xu, Z.H. Du, J.Q. Zhang, Enhancing visible light photocatalytic activity of direct Z-scheme SnS2/Ag3PO4 heterojunction photocatalysts. Mater. Res. Bull. 81, 16–26 (2016)

    Article  CAS  Google Scholar 

  4. Y.F. Jia, S.P. Li, H.X. Ma, J.Z. Gao, G.Q. Zhu, F.C. Zhang, J.Y. Park, S.W. Cha, J.S. Bae, C.L. Liu, Oxygen vacancy rich Bi2O4-Bi4O7-BiO2-x composites for UV–vis-NIR activated high efficient photocatalytic degradation of bisphenol A. J. Hazard. Mater. 382, 121121 (2020)

    Article  CAS  Google Scholar 

  5. K. Kaviyarasu, C.M. Magdalane, D. Jayakumar, Y. Samson, A.K.H. Bashir, M. Maaza, D. Letsholathebe, A.H. Mahmoud, J. Kennedy, High performance of pyrochlore like Sm2Ti2O7 heterojunction photocatalyst for efficient degradation of rhodamine-B dye with waste water under visible light irradiation. J. King Saud Univ. Sci. 31, 1516–1522 (2020)

    Article  Google Scholar 

  6. C.M. Magdalane, K. Kaviyarasu, G.M.A. Priyadharsini, A.K.H. Bashir, N. Mayedwa, N. Matinise, A.B. Isaev, N.A. Al-Dhabi, M.V. Arasu, S. Arokiyaraj, J. Kennedy, M. Maaza, Improved photocatalytic decomposition of aqueous Rhodamine-B by solar light illuminated hierarchical yttria nanosphere decorated ceria nanorods. J. Mater. Res. Technol. 8, 2898–2909 (2019)

    Article  CAS  Google Scholar 

  7. S. Panimalar, R. Uthrakumar, E. TamilSelvi, P. Gomathy, C. Inmozhi, K. Kaviyarasu, J. Kennedy, Studies of MnO2/g-C3N4 hetrostructure efficient of visible lightphotocatalyst for pollutants degradation by sol-gel technique. Surf. Interfaces 20, 100512 (2020)

    Article  Google Scholar 

  8. Z.G. Yi, J.H. Ye, N. Kikugawa, T. Kako, S.X. Ouyang, H. Stuart-Williams, H. Yang, J.Y. Cao, W.J. Luo, Z.S. Li, Y. Liu, R.L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 9, 559–564 (2010)

    Article  CAS  Google Scholar 

  9. D.J. Martin, G.G. Liu, S.J.A. Moniz, Y.P. Bi, A.M. Beale, J.H. Ye, J.W. Tang, Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. Chem. Soc. Rev. 44, 7808–7828 (2015)

    Article  CAS  Google Scholar 

  10. C. Cui, Y.P. Wang, D.Y. Liang, W. Cui, H.H. Hu, B.Q. Lu, S. Xu, X.Y. Li, C. Wang, Y. Yang, Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Ag heterostructure photocatalyst with enhanced photocatalytic activity and stability under visible light. Appl. Catal. B: Environ. 158–159, 150–160 (2014)

    Article  Google Scholar 

  11. H.J. Li, W.G. Tu, Y. Zhou, Z.G. Zou, Z-Scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges. Adv. Sci. 3, 1500389 (2016)

    Article  Google Scholar 

  12. B.J. Zheng, X. Wang, C. Liu, K. Tan, Z.X. Xie, L.S. Zheng, High-efficiently visible light-responsive photocatalysts: Ag3PO4 tetrahedral microcrystals with exposed 111 facets of high surface energy. J. Mater. Chem. A 1, 12635–12640 (2013)

    Article  CAS  Google Scholar 

  13. W.R. Cao, Z.Y. Gui, L.F. Chen, X.D. Zhu, Z.W. Qi, Facile synthesis of sulfate-doped Ag3PO4 with enhanced visible light photocatalystic activity. Appl. Catal. B Environ. 200, 681–689 (2017)

    Article  CAS  Google Scholar 

  14. S.G. Meng, X.F. Ning, T. Zhang, S.F. Chen, X.L. Fu, What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst Ag3PO4/g-C3N4, band-band transfer or a direct Z-scheme? Phys. Chem. Chem. Phys. 17, 11577–11585 (2015)

    Article  CAS  Google Scholar 

  15. X.X. Chen, R. Li, X.Y. Pan, X.T. Huang, Z.G. Yi, Fabrication of In2O3-Ag-Ag3PO4 composites with Z-scheme configuration for photocatalytic ethylene degradation under visible light irradiation. Chem. Eng. J. 320, 644–652 (2017)

    Article  CAS  Google Scholar 

  16. C.S. Zhu, L. Zhang, B. Jiang, J.T. Zheng, P. Hu, S.J. Li, M.B. Wu, W.T. Wu, Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 377, 99–108 (2016)

    Article  CAS  Google Scholar 

  17. W.L. Shi, F. Guo, S.L. Yuan, In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation. Appl. Catal. B Environ. 209, 720–728 (2017)

    Article  CAS  Google Scholar 

  18. I. Ibrahim, I.O. Ali, T.M. Salama, A.A. Bahgat, M.M. Mohamed, Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M=Zn Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: high catalytic performances for nitroarenes reduction. Appl. Catal. B Environ. 181, 389–402 (2016)

    Article  CAS  Google Scholar 

  19. F. Dehghani, S. Hashemian, A. Shibani, Effect of calcination temperature for capability of MFe2O4 (M=Co, Ni and Zn) ferrite spinel for adsorption of bromophenol red. J. Ind. Eng. Chem. 48, 36–42 (2017)

    Article  CAS  Google Scholar 

  20. Y.F. Li, J.H. Shen, Y.J. Hu, S.J. Qiu, G.Q. Min, Z.T. Song, Z. Sun, C.Z. Li, General flame approach to chainlike MFe2O4 spinel (M=Cu, Ni Co, Zn) nanoaggregates for reduction of nitroaromatic compounds. Ind. Eng. Chem. Res. 54, 9750–9757 (2015)

    Article  CAS  Google Scholar 

  21. G.Q. Hou, Y.J. Zhang, S.J. Gao, Enhanced visible-light photocatalytic activities of flower-like ZnFe2O4 decorated with Ag3PO4 nanoparticles. Mater. Lett. 209, 598–601 (2017)

    Article  CAS  Google Scholar 

  22. S.Q. Huang, Y.G. Xu, T. Zhou, M. Xie, Y. Ma, Q.Q. Liu, L.Q. Jing, H. Xu, H.M. Li, Constructing magnetic catalysts with in-situ solid-liquid interfacial photo-Fenton-like reaction over Ag3PO4@NiFe2O4 composites. Appl. Catal. B Environ. 225, 40–50 (2018)

    Article  Google Scholar 

  23. S.Q. Huang, Y.G. Xu, Q.Q. Liu, T. Zhou, Y. Zhao, L.Q. Jing, H. Xu, H.M. Li, Enhancing reactive oxygen species generation and photocatalyticperformance via adding oxygen reduction reaction catalysts into thephotocatalysts. Appl. Catal. B Environ. 218, 174–185 (2017)

    Article  CAS  Google Scholar 

  24. L. Gan, L.J. Xu, K. Qian, Preparation of core-shell structured CoFe2O4 incorporated Ag3PO4 nanocomposites for photocatalytic degradation of organic dyes. Mater. Des. 109, 354–360 (2016)

    Article  CAS  Google Scholar 

  25. M. Ge, Y.Y. Chen, M.L. Liu, M. Li, Synthesis of magnetically separable Ag3PO4/ZnFe2O4 composite photocatalysts for dye degradation under visible LED light irradiation. J. Environ. Chem. Eng. 3, 2809–2815 (2015)

    Article  CAS  Google Scholar 

  26. G.Y. Zhao, L.J. Liu, J.R. Li, Q. Liu, Efficient removal of dye MB: through the combined action of adsorption and photodegradation from NiFe2O4/Ag3PO4. J. Alloys Compds. 664, 169–174 (2016)

    Article  CAS  Google Scholar 

  27. E. Abroushan, S. Farhadi, A. Zabardasti, Ag3PO4/CoFe2O4 magnetic nanocomposite: synthesis, characterization and applications in catalytic reduction of nitrophenols and sunlight-assisted photocatalytic degradation of organic dye pollutants. RSC Adv. 7, 18293–18304 (2017)

    Article  CAS  Google Scholar 

  28. D. Zhang, J. Li, Q.Q. Wang, Q.S. Wu, High 001 facets dominated BiOBr lamellas: facile hydrolysis preparation and selective visible-light photocatalytic activity. J. Mater. Chem. A 1, 8622–8629 (2013)

    Article  CAS  Google Scholar 

  29. Z. Hu, J.C. Lyu, M. Ge, Role of reactive oxygen species in the photocatalytic degradation of methyl orange and tetracycline by Ag3PO4 polyhedron modified with g-C3N4. Mater. Sci. Semicond. Process. 105, 104731 (2020)

    Article  CAS  Google Scholar 

  30. Z.L. Li, J.C. Lyu, K.L. Sun, M. Ge, Construction of magnetic AgBr/Cu/CuFe2O4 Z-scheme photocatalyst with improved photocatalytic performance. Mater. Lett. 214, 257–260 (2018)

    Article  CAS  Google Scholar 

  31. K. Tian, W.J. Liu, H. Jiang, Comparative investigation on photoreactivity and mechanism of biogenic and chemosythetic Ag/C3N4 composites under visible light irradiation. ACS Sustain. Chem. Eng. 3, 269–276 (2015)

    Article  CAS  Google Scholar 

  32. C. Singh, A. Goyal, R. Malik, S. Bansal, S. Singhal, Envisioning the attachment of CdS nanoparticles on the surface of MFe2O4 (M = Zn, Co and Ni) nanocubes: analysis of structural, optical, magnetic and photocatalytic properties. J. Alloys Compd. 695, 351–363 (2017)

    Article  CAS  Google Scholar 

  33. L.Q. Jing, Y.G. Xu, C.C. Qin, J. Liu, S.Q. Huang, M.Q. He, H. Xu, H.M. Li, Visible-light-driven ZnFe2O4/Ag/Ag3VO4 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Mater. Res. Bull. 95, 607–615 (2017)

    Article  CAS  Google Scholar 

  34. X.W. Li, L. Wang, L. Zhang, S.P. Zhuo, A facile route to the synthesis of magnetically separable BiOBr/NiFe2O4 composites with enhanced photocatalytic performance. Appl. Surf. Sci. 419, 586–594 (2017)

    Article  CAS  Google Scholar 

  35. R. Illa, R. Ješko, R. Silber, O. Životský, K.M. Kutláková, L. Matějová, M. Kolenčík, J. Pištora, J. Hamrle, Structural, magnetic, optical, and magneto-optical properties of CoFe2O4 thin films fabricated by a chemical approach. Mater. Res. Bull. 117, 96–102 (2019)

    Article  CAS  Google Scholar 

  36. J. Wan, X. Du, E.Z. Liu, Y. Hu, J. Fan, X.Y. Hu, Z-scheme visible-light-driven Ag3PO4 nanoparticle@MoS2 quantum dot/few-layered MoS2 nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation. J. Catal. 345, 281–294 (2017)

    Article  CAS  Google Scholar 

  37. Y. Duan, L. Deng, Z. Shi, L. Zhu, G.C. Li, Assembly of graphene on Ag3PO4/AgI for effective degradation of carbamazepine under visible-light irradiation: mechanism and degradation pathways. Chem. Eng. J. 359, 1379–1390 (2019)

    Article  CAS  Google Scholar 

  38. L.X. Wang, J.C. Li, Y.Q. Wang, L.J. Zhao, Q. Jiang, Adsorption capability for congo red on nanocrystalline MFe2O4 (M=Mn, Fe Co, Ni) spinel ferrites. Chem. Eng. J. 181–182, 72–79 (2012)

    Article  Google Scholar 

  39. J.C. Lyu, Z. Hu, Z.L. Li, M. Ge, Removal of tetracycline by BiOBr microspheres with oxygen vacancies: combination of adsorption and photocatalysis. J. Phys. Chem. Solids 129, 61–70 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Natural Science Foundation of Hebei Province (B2019209373) and we thank the luobo lab (www.luobolab.com) for the characterization of catalysts used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., He, Q. & Ge, M. Photocatalytic degradation of organic contaminants by magnetic Ag3PO4/MFe2O4 (M = Zn, Ni, Co) composites: a comparative study and a new insight into mechanism. J Mater Sci: Mater Electron 32, 827–842 (2021). https://doi.org/10.1007/s10854-020-04861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04861-y

Navigation