Skip to main content

Advertisement

Log in

Study of optoelectronic and thermoelectric spectra of Tl(Nd/Gd)S2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Present research work is devoted to the study of optoelectronic spectra and thermoelectric properties of thallium-based neodymium and gadolinium sulphides (viz. TlNdS2 and TlGdS2) using FP-LAWP method within DFT and semi-classical Boltzmann theory. Band structure calculations show that both the compounds are indirect bandgap semiconductors with wide bandgap ~ 1.61 eV for TlNdS2 and 1.47 eV for TlGdS2 under TB-mBJ approximation. The appearance of most prominent peak of real dielectric constant at photon energy, E ~ 5.0 eV and ~ 4.0 eV for TlNdS2 and TlGdS2 respectively in ultraviolet UV regime, indicates high optical response of the materials towards dielectric polarization for (UV) radiation. The high peak of refractive index at ~ 5.0 eV indicate that both the compounds act as optically denser medium and they are more photon absorbent for ultraviolet (UV) light. Refractive index data satisfy the Penn formula for real part of dielectric function that legalizes our optical calculations. The maximum value of reflection coefficient (~ 45–60%) has been found in UV regime and the observed threshold energies are ~ 1.61 eV and 1.47 eV for TlNdS2 and TlGdS2, respectively. The thermoelectric (TE) properties show that both the compounds are p-type semiconductor with figure of merit (ZT) ≥ 1 and prove that both the compounds are excellent candidates for thermoelectric devices. Also, both the compounds have maximum power factor (PF = 6 × 1011 for TlNdS2 and 1.1 × 1012 for TlGdS2) at high temperature (900 K) confirms that these compounds can be used for higher temperatures thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Baker, II-VI narrow bandgap semiconductors: optoelectronics, in Springer Handbook of Electronic and Photonic Materials. ed. by S. Kasap, P. Capper (Springer, Cham, 2017)

    Google Scholar 

  2. A. Yoshikawa, H. Matsunami, Y. Nanishi, Development and applications of wide bandgap semiconductors, in Wide Bandgap Semiconductors. ed. by K. Takahashi, A. Yoshikawa (Springer, Berlin, 2007)

    Google Scholar 

  3. S. B. Shiva Prasaath, S. U. Rani. (2019). Int. J. Adv. Res. Ideas Innov. Technol. 5(2), 1118–1122.

  4. R. Sankar, B.S. Savitree, A. Abdeljalil, K. Holger, Crystal structures, electronic structures, and physical properties of Tl4MQ4 (M = Zr or Hf; Q = S or Se). Inorg. Chem. 50(1), 245–249 (2011)

    Article  CAS  Google Scholar 

  5. K. Kurosaki, A. Kosuga, H. Muta, M. Uno, S. Yamanaka, Appl. Phys. Lett. 87, 061919/1-061919/3 (2005)

    Article  CAS  Google Scholar 

  6. M. Lukas, C. Frederick, Y. Binghai, C. Stanislav, F. Claudia, Topological insulators and thermoelectric materials. Phys. Status Solidi, Rapid Res. Lett. 7(2), 91–100 (2013)

    Google Scholar 

  7. M. Duczmal, L. Pawlak, S. Pokrzywnicki, Magnetic properties of layer-type compounds T1GdS2 and TlGdSe2. Acta Phys. Polon. 97(5), 839–842 (2000)

    Article  CAS  Google Scholar 

  8. R. Gautam, A. Kumar, R.P. Singh, First principle investigations on electronic, magnetic, thermodynamic, and transport properties of TlGdX2 (X = S, Se, Te). Acta Phys. Pol. A 132, 1371–1378 (2017)

    Article  CAS  Google Scholar 

  9. R. Sankar, S.B. Sanasy, H. Kleinke, Thermoelectric properties of TlGdQ2 (Q = Se, Te) and Tl9GdTe6. J. Electron. Mater. 41(6), 1662–1666 (2012)

    Article  CAS  Google Scholar 

  10. M. Duczmal, L. Pawlak, magnetic and structural characterization of TlLnSe2 compounds (Ln=Nd toYb). J. Alloy. Compd. 225, 181–184 (1995)

    Article  CAS  Google Scholar 

  11. M. Duczmal, E. Mosiniewicz-Szablewska, S. Pokrzywnicki, Electron paramagnetic resonance of Gd3+ in TlGdSe2. Phys. Stat. Sol. (A) 196(1), 321–324 (2003)

    Article  CAS  Google Scholar 

  12. G.D. Guseinov, G.B. Abdullayev, S.M. Bidzinova, F.M. Seidov, M.Z. Ismailov, A.M. Pashayev, On new analogs of TlSe-type semiconductor compounds. Phys. Lett. 33A(7), 421–422 (1970)

    Article  Google Scholar 

  13. J. Singh, L. Nordstrom, Plane Waves, Pseudo Potentials, and the LAPW Method (Springer, New York, 2006).

    Google Scholar 

  14. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  CAS  Google Scholar 

  15. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. B 140(4A), 1133–1138 (1965)

    Article  Google Scholar 

  16. K. Schwarz, P. Blaha, G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002)

    Article  Google Scholar 

  17. J. Hafner, Ab-initio simulations of materials using VASP: density-functional theory and beyond. Comput. Solid State Chem. 29, 2044–2078 (2008)

    CAS  Google Scholar 

  18. M. Fox, G.F. Bertsch, Optical Properties of Solids (Oxford University Press, Oxford, UK, 2001).

    Google Scholar 

  19. F. Abeles, Optical Properties of Solids (American Elsevier , Atlanta GA, 1972).

    Google Scholar 

  20. H. Wang, Y. Wang, X. Cao, L. Zhang, M. Feng, G. Lan, Simulation of electronic density of states and optical properties of PbB4O7 by first-principles DFT method. Phys. Status Solidi B 246(2), 437–443 (2009)

    Article  CAS  Google Scholar 

  21. G.K.H. Madsen, D.J. Singh, BoltzTraP, A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  CAS  Google Scholar 

  22. T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo, Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210–125216 (2003)

    Article  Google Scholar 

  23. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semi local exchange–correlation potential. Phys. Rev. Lett. 102, 226401–226404 (2009)

    Article  Google Scholar 

  24. A.D. Becke, E.R. Johnson, A simple effective potential for exchange. J. Chem. Phys. 124, 221101–221104 (2006)

    Article  Google Scholar 

  25. K.E. Babu, A. Veeraiah, D.T. Swamy, V. Veeraiah, First-principles study of electronic structure and optical properties of cubic perovskite CsCaF3. Chin. Phys. Lett. 29(11), 117102–117105 (2012)

    Article  Google Scholar 

  26. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128(5), 2093–2097 (1962)

    Article  CAS  Google Scholar 

  27. L. Tan, L.K. DeNoyer, R.H. French, M.J. Guittet, M.G. Soyer, Kramers-Kronig transform for the surface energy loss function. J. Electron Spectrosc. Relat. Phenom. 142, 97–103 (2005)

    Article  CAS  Google Scholar 

  28. K.C. Bhamu, R. Khenata, S.A. Khan, M. Singh, K.R. Priolkar, Electronic, optical and thermoelectric properties of 2H-CuAlO2: a first principles study. J. Electron. Mater. 4, 615–623 (2016)

    Article  Google Scholar 

  29. P. Nozieres, Electron interaction in solids, characteristic energy loss spectrum. Phys. Rev. B 113, 1254 (1959)

    Article  CAS  Google Scholar 

  30. T. Kiguchi, N. Wakiya, K. Shinozaki, T.J. Konno, Valence-EELS analysis of local electronic and optical properties of PMN–PT epitaxial film. Mater. Sci. Eng. B 161, 160–165 (2009)

    Article  CAS  Google Scholar 

  31. T.M. Bhat, M. Nabi, D.C. Gupta, Structural, elastic, thermodynamic and thermoelectric properties of Fe2TiSn Heusler alloy: high pressure study. Result Phys. 12, 15 (2018)

    Article  Google Scholar 

  32. B. Khan, M.Y. Kachoei, H.A.R. Aliabad, I. Khan, S.J. Asadabadi, I. Ahmad, Effects of chemical potential on the thermoelectric performance of alkaline-earth based skutterudites (AFe4Sb12, A-Ca, Sr and Ba). J. Alloys Compd. 694, 253–260 (2017)

    Article  CAS  Google Scholar 

  33. V. J. Tennery, Review of thermal conductivity and heat transfer in uranium oxide, OAK, Ridge National Laboratory, US Atomic Enery Commission, (1958);1–14

  34. T.J. Scheidemantel, C.A. Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo, Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210–125216 (2003)

    Article  Google Scholar 

  35. N.M. Ravindra, P. Ganapathy, J. Choi, Energy gap–refractive index relations in semiconductors—an overview. Infrared Phys. Technol. 50, 21–29 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Rishi P. Singh) is thankful and wants to acknowledge to DST, New Delhi, India for providing the financial support received under DST-FIST scheme for colleges (project no. SR/FST/COLLEGE-318/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi P. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annveer, Gautam, R., Kumar, A. et al. Study of optoelectronic and thermoelectric spectra of Tl(Nd/Gd)S2. J Mater Sci: Mater Electron 32, 727–744 (2021). https://doi.org/10.1007/s10854-020-04852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04852-z

Navigation