Skip to main content
Log in

Room temperature ferromagnetism in chemically synthesized dilute magnetic semiconducting (In0.95Mn0.05)2O3 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single-phase nanocrystalline In2O3 doped with 5 atomic percent Mn produces dilute magnetic semiconductor (DMS). The material is synthesized by low temperature ‘pyrophoric reaction’ using nitrate salts and diethanolamine. The XRD pattern at room temperature reveals the formation of cubic bixbyite structure of the oxide with nano-structured grain which is confirmed by FESEM. Magnetization data confirms ferromagnetic behavior at room temperature with gradual decrease in magnetization with rise of temperature. The phase transition occurred at 500 K is attributed to the transformation of ferromagnetic to paramagnetic state of the nanometric sample. Curie–Weiss inverse magnetic susceptibility [χ−1(T)] plot against temperature deduced the effective Bohr magneton (μeff) to be ~ 3.65 μB/Mn ion. Ferromagnetism may have generated from mixed valence states (Mn4+major /Mn3+minor) of Mn which is 3d element. Valence state was determined by chemical method using redox reaction between Fe2+and Mn4+/ Mn3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S.A. Chambers, Surf. Sci. Rep. 61, 345 (2006)

    Article  CAS  Google Scholar 

  2. L.M. Huang, C. Moysés Araújo, R. Ahuja, Eur. Phys. Lett. 87, 27013 (2009)

    Article  Google Scholar 

  3. J. Philip et al., Nat. Mater. 5, 298 (2006)

    Article  CAS  Google Scholar 

  4. K.R. Kittilstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005)

    Article  Google Scholar 

  5. A. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, H. Koinuma, J. Appl. Phys. 89, 7284 (2001)

    Article  CAS  Google Scholar 

  6. T. Story, G. Karczewski, L. Świerkowski, R.R. Gałązka, Phys. Rev. B 42, 10477 (1990)

    Article  CAS  Google Scholar 

  7. W.J.M. de Jonge, H.J.M. Swagten, J. Magn. Magn. Mater. 100, 322 (1991)

    Article  Google Scholar 

  8. P.J.T. Eggenkamp, H.J.M. Swagten, T. Story, V.I. Litvinov, C.H.W. Swuste, W.J.M. de Jonge, Phys. Rev. B 51, 15250 (1995)

    Article  CAS  Google Scholar 

  9. H. Ohno, Science 281, 951 (1998)

    Article  CAS  Google Scholar 

  10. H. Ohno, Acta Phys. Pol. A 94, 155 (1998)

    Article  CAS  Google Scholar 

  11. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  CAS  Google Scholar 

  12. C. Zener, Phys. Rev. 81, 440 (1951)

    Article  CAS  Google Scholar 

  13. K. Wongsaprom, S. Sonsupap, S. Maensiri, P. Kidkhunthod, Appl. Phys. A 121, 239 (2015)

    Article  CAS  Google Scholar 

  14. A. Murali, A. Barve, V. Leppert, S.H. Risbud, I.M. Kennedy, H.W.H. Lee, Nano Lett. 1, 287 (2001)

    Article  CAS  Google Scholar 

  15. X. Li, M.W. Wanlass, T.A. Gessert, K.A. Emery, T.J. Coutts, Appl. Phys. Lett. 54, 2674 (1989)

    Article  CAS  Google Scholar 

  16. D. Chu, Y. Zeng, D. Jiang, J. Xu, Nanotechnology 18(43), 435605 (2007)

    Article  Google Scholar 

  17. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat Mater. 4, 173 (2005)

    Article  CAS  Google Scholar 

  18. J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)

    Article  CAS  Google Scholar 

  19. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  CAS  Google Scholar 

  20. G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu, Z.X. Shen, C.H.A. Huan, T.C. Sum, J. Ding, T. Wu, Phys. Rev. B 79, 174406 (2009)

    Article  Google Scholar 

  21. J. He, S. Xu, Y.K. Yoo, Q. Xue, H.-C. Lee, S. Cheng, X.-D. Xiang, G.F. Dionne, I. Takeuchi, Appl. Phys. Lett. 86, 052503 (2005)

    Article  Google Scholar 

  22. G. Peleckis, X.L. Wang, S.X. Dou, Appl. Phys. Lett. 88, 132507 (2006)

    Article  Google Scholar 

  23. J.M.D. Coey, P. Stamenov, R.D. Gunning, M. Venkatesan, K. Paul, New J. Phys. 12, 053025 (2010)

    Article  Google Scholar 

  24. M. Epifani, P. Siciliano, J. Am. Chem. Soc. 126, 4078 (2004)

    Article  CAS  Google Scholar 

  25. M. Ivanovskaya, A. Gurlo, P. Bogdanov, Sens. Actuat. B. 77, 264 (2001)

    Article  CAS  Google Scholar 

  26. H. Yang, A. Tang, X. Zhang, W. Yang, G. Qiu, Scripta Mater. 50, 413 (2004)

    Article  CAS  Google Scholar 

  27. J. Xu, X. Wang, J. Shen, Sens. Actuat. B. 115, 642 (2006)

    Article  CAS  Google Scholar 

  28. H. Zhou, W. Cai, L. Zhang, Mater. Res. Bull. 34, 845 (1999)

    Article  CAS  Google Scholar 

  29. J.F.Q. Rey, T.S. Plivelic, R.A. Rocha, S.K. Tadokoro, I. Torriana, E.N.S. Muccillo, J. Nano part. Res. 7, 203 (2005)

    Article  CAS  Google Scholar 

  30. Z. Zhan, W. Song, D. Jiang, J. Colloid Interf. Sci. 271, 366 (2004)

    Article  CAS  Google Scholar 

  31. J.J. Prince, S. Ramamurthy, B. Subramanian, J. Cryst. Growth 240, 142 (2002)

    Article  Google Scholar 

  32. W.S. Seo, H.H. Jo, K. Lee, J.T. Park, Adv. Mater. 15, 795 (2003)

    Article  CAS  Google Scholar 

  33. B.L. Zhu, C.S. Xie, D.W. Zeng, A.H. Wang, W.L. Song, X.Z. Zhao, J. Mater. Sci. 40, 5783 (2005)

    Article  CAS  Google Scholar 

  34. E. Wu, POWD—an Interactive Powder Diffraction Data Interpretation and Indexing Program, Ver. 2.2, School of Physical Sciences, Flinders University of South Australia, Bedford Park, S. A. 5042, Australia

  35. H.P. Klung, L.B. Alexander, X-Ray Diffraction Procedures (Wiles, New York, 1974), p. 687

    Google Scholar 

  36. S. Dasssarma, E.H. Hwang, A. Kaminski, Phys. Rev. B 67, 155201 (2003)

    Article  Google Scholar 

  37. M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954)

    Article  CAS  Google Scholar 

  38. K. Yosida, Phys. Rev. 106, 839 (1957)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge their affiliated institution, Indian Institute of Technology Kharagpur, West Bengal, India for providing the research facilities except Panchanan Pramanik who is now in GLA University, Mathura, UP 281406 after retirement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhakti Pada Das.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest with any individual or agency.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B.P., Oraon, A., Nath, T.K. et al. Room temperature ferromagnetism in chemically synthesized dilute magnetic semiconducting (In0.95Mn0.05)2O3 nanoparticles. J Mater Sci: Mater Electron 31, 22872–22880 (2020). https://doi.org/10.1007/s10854-020-04814-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04814-5

Navigation