Skip to main content
Log in

Temperature dependent electronic transport properties of heterojunctions formed between perovskite SrTiO3 nanocubes and silicon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, synthesized strontium titanate (SrTiO3) nanocubes were coated on n-Si semiconductor by spin coating to obtain a heterojunction device. Transmission electron microscopy image, scanning electron microscope image and x-ray diffraction patterns of thin film of SrTiO3 nanocubes coated on Si surface were taken for structural and morphological characterization of the material. The basic device parameters such as ideality factor (n) and barrier height (Φb) values of the reference Ni/Si/Al metal–semiconductor diode and of the Ni/SrTiO3/n-Si/Al heterojunction devices were calculated with the thermionic emission (TE) theory. The n and Φb values of the reference Ni/n-Si/Al device were calculated as 1.93 and 0.60 eV, respectively at room temperature. On the other hand, lower n and higher Φb values of Ni/SrTiO3/n-Si/Al heterojunction device were calculated as 1.34 and 0.63 eV, respectively. With these results, the current–voltage (I–V) measurements of the heterojunction device in the 80–400 K range were taken and the n, Φb, series resistance (Rs) values were calculated depending on the temperature by using different methods such as TE, Cheung and Norde functions. It was observed that while the temperature values decreased, n and Rs values of the device increase and Φb value decreases. The results obtained showed that the charge transport system is compatible with TE. The device parameters calculated from the Cheung and Norde methods also showed similar changes depending on the temperature. However, since the calculation method is different according to the TE method, different values were obtained in the device parameters. In addition, the curve Φb and (1/n)−1 against (1/2kT) was observed in accordance with the double Gauss distribution of the barrier heights. It was seen that the reverse bias I–V characteristics of the Ni/SrTiO3/n-Si/Al can be used in thermal sensors applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W. Li, H. Dong, G. Dong, L. Wang, Hystersis mechanism in perovskite photovoltaic devices and its potential application for multi-bit memory devices. Org. Electron. 26, 208–212 (2015)

    CAS  Google Scholar 

  2. M.I. Saidaminov et al., Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 1–7 (2015)

    Google Scholar 

  3. N. Nuraje, K. Su, Perovskite ferroelectric nanomaterials. Nanoscale 5, 8752–8780 (2013)

    CAS  Google Scholar 

  4. C.D. Chandler, C. Roger, M.J. Hampden-Smith, Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chem. Rev. 93, 1205–1241 (1993)

    CAS  Google Scholar 

  5. S. Suthirakun, Rational design of perovskite based anode materials for solid oxide fuel cells: a computational approach. Doctoral dissertation (2013). Retrieved from https://scholarcommons.sc.edu/etd/597

  6. M. Moniruddin et al., Recent progress on perovskite materials in photovoltaic and water splitting applications. Mater. Today Energy 7, 246–259 (2018)

    Google Scholar 

  7. T. Shi, G. Li, J. Zhu, Compositional design strategy for high performance ferroelectric oxides with perovskite structure. Ceram. Int. 43, 2910–2917 (2017)

    CAS  Google Scholar 

  8. L. Pellegrino, I. Pallecchi, D. Marre, E. Bellingeri, A.S. Siri, Fabrication of submicron-scale SrTiO3− δ devices by an atomic force microscope. Appl. Phys. Lett. 81, 3849–3851 (2002)

    CAS  Google Scholar 

  9. V.M. Longo et al., Structural conditions that leads to photoluminescence emission in SrTiO3: an experimental and theoretical approach. J. Appl. Phys. 104, 23515 (2008)

    Google Scholar 

  10. B. Psiuk, J. Szade, R. Wrzalik, M. Osadnik, T. Wala, “Milling-induced phenomena in SrTiO3. Ceram. Int. 40, 6957–6961 (2014)

    CAS  Google Scholar 

  11. K. Van Benthem, C. Elsässer, R.H. French, Bulk electronic structure of SrTiO3: experiment and theory. J. Appl. Phys. 90, 6156–6164 (2001)

    Google Scholar 

  12. N. Konofaos, E.K. Evangelou, Z. Wang, V. Kugler, U. Helmersson, Electrical characterisation of SrTiO3/Si interfaces. J. Non-Cryst. Solids 303, 185–189 (2002)

    CAS  Google Scholar 

  13. N.R. Varra, D.V. Vivekananda, G. Sai Krishna, B. Sri Vivek, P. Vimala, Electrical characteristics of Au/n-GaN Schottky junction with a High-k SrTiO3 insulating layer. J. Nano-Electron. Phys. (2019). https://doi.org/10.21272/jnep.11(4).04005

    Article  Google Scholar 

  14. B. Kınacı, N. Akın, İK. Durukan, T. Memmedli, S. Özçelik, The study on characterizations of SrTiO3 thin films with different growth temperatures. Superlattices Microstruct. 76, 234–243 (2014)

    Google Scholar 

  15. D.A. Neamen, Semiconductor Physics and Devices: Basic Principles (Irwin, Boston, 1992)

    Google Scholar 

  16. J. Shim et al., Recent progress in Van der Waals (vdW) heterojunction-based electronic and optoelectronic devices. Carbon 133, 78–89 (2018)

    CAS  Google Scholar 

  17. Z. Çaldıran, M. Biber, Ö. Metin, Ş Aydoğan, Improving the performance of the organic solar cell and the inorganic heterojunction devices using monodisperse Fe3O4 nanoparticles. Optik 142, 134–143 (2017)

    Google Scholar 

  18. X. Wang et al., Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 9, 507–516 (2016)

    CAS  Google Scholar 

  19. K. Hsu, T. Fang, Y. Hsiao, P. Wu, Response and characteristics of TiO2/perovskite heterojunctions for CO gas sensors. J. Alloys Compd. 794, 576–584 (2019)

    CAS  Google Scholar 

  20. Z. Çaldıran, Fabrication of Schottky barrier diodes with the lithium fluoride interface layer and electrical characterization in a wide temperature range. J. Alloys Compd. 816, 152601 (2020)

    Google Scholar 

  21. Y. Zhang, Q. Yan, F. Yang, Y. Xu, L. Liu, Oxygen pressure dependence of dielectric properties in SrTiO3/Si heterojunctions. Ceram. Int. 42, 12672–12674 (2016)

    CAS  Google Scholar 

  22. V.R. Reddy, C.-J. Choi, Microstructural and interface properties of Au/SrTiO3 (STO)/n-GaN heterojunction with an e-beam evaporated high-k STO interlayer. J. Alloys Compd. 823, 153775 (2020)

    CAS  Google Scholar 

  23. X.B. Yin, Z.H. Tan, X. Guo, The role of Schottky barrier in the resistive switching of SrTiO3: direct experimental evidence. Phys. Chem. Chem. Phys. 17, 134 (2015)

    CAS  Google Scholar 

  24. A.R. Deniz, Z. Çaldıran, M. Biber, Ü. İncekara, Ş Aydoğan, Investigation of electrical properties of Ni/crystal violet (C25H30CIN3)/n-Si/Al diode as a function of temperature. J. Alloys Compd. 763, 622–628 (2018)

    CAS  Google Scholar 

  25. H. Tecimer, A. Türüt, H. Uslu, Ş Altındal, İ Uslu, Temperature dependent current-transport mechanism in Au/(Zn-doped) PVA/n-GaAs Schottky barrier diodes (SBDs). Sens. Actuators A 199, 194–201 (2013)

    CAS  Google Scholar 

  26. Y.S. Ocak, M.A. Ebeoğlu, G. Topal, T. Kılıçog, Temperature dependent electrical characteristics of an organic–inorganic heterojunction obtained from a novel organometal Mn complex. Phys. B 405, 2329–2333 (2010)

    CAS  Google Scholar 

  27. A. Turut et al., The current-voltage characteristics of the ferroelectric p-YMnO3 thin film/bulk p-Si heterojunction over a broad measurement temperature range. J. Alloys Compd. 782, 566–575 (2019)

    CAS  Google Scholar 

  28. F.A. Rabuffetti et al., Synthesis-dependent first-order Raman scattering in SrTiO3 nanocubes at room temperature. Chem. Mater. 20, 5628–5635 (2008)

    CAS  Google Scholar 

  29. L.B. Taşyürek, M. Sevim, Z. Çaldıran, S. Aydogan, Ö. Metin, The synthesis of SrTiO3 nanocubes and the analysis of nearly ideal diode application of Ni/SrTiO3 nanocubes/n-Si heterojunctions. Mater. Res. Express 5, 15060 (2018)

    Google Scholar 

  30. W. Dong et al., Porous SrTiO3 spheres with enhanced photocatalytic performance. Mater. Lett. 67, 131–134 (2012)

    CAS  Google Scholar 

  31. S.M. Sze, Semiconductor Devices: Physics and Technology (Wiley, Hoboken, 2008)

    Google Scholar 

  32. W. Mönch, Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities. J. Vacuum Sci Technol B 17, 1867–1876 (1999)

    Google Scholar 

  33. R.A. McKee, F.J. Walker, M.F. Chisholm, Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81, 3014 (1998)

    CAS  Google Scholar 

  34. R. Beyers, Thermodynamic considerations in refractory metal-silicon-oxygen systems. J. Appl. Phys. 56, 147–152 (1984)

    CAS  Google Scholar 

  35. R.T. Tung, The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 11304 (2014)

    Google Scholar 

  36. R.T. Tung, Recent advances in Schottky barrier concepts. Mater. Sci. Eng. R 35, 1–138 (2001)

    Google Scholar 

  37. Z. Çaldıran, A.R. Deniz, Ş Aydoğan, A. Yesildag, D. Ekinci, The barrier height enhancement of the Au/n-Si/Al Schottky barrier diode by electrochemically formed an organic Anthracene layer on n-Si. Superlattices Microstruct. 56, 45–54 (2013)

    Google Scholar 

  38. Y. Li, W. Long, R.T. Tung, Effect of metal interaction on the Schottky barrier height on adsorbate-terminated silicon surfaces. Appl. Surf. Sci. 284, 720–725 (2013)

    CAS  Google Scholar 

  39. İ Orak, Z. Caldiran, M. Bakir, O.S. Cifci, A. Kocyigit, The aromatic thermosetting Copolyester for Schottky diode applications in a wide temperature range. J. Electron. Mater. 49, 402–409 (2020)

    CAS  Google Scholar 

  40. V.R. Reddy, M.S.P. Reddy, A.A. Kumar, C.-J. Choi, Effect of annealing temperature on electrical properties of Au/polyvinyl alcohol/n-InP Schottky barrier structure. Thin Solid Films 520, 5715–5721 (2012)

    CAS  Google Scholar 

  41. W. Long, Y. Li, R.T. Tung, Schottky barrier height systematics studied by partisan interlayer. Thin Solid Films 557, 254–257 (2014)

    CAS  Google Scholar 

  42. D. Korucu, A. Turut, H. Efeoglu, Temperature dependent I – V characteristics of an Au/n-GaAs Schottky diode analyzed using Tung’s model. Phys. B 414, 35–41 (2013)

    CAS  Google Scholar 

  43. S.M. Tunhuma, F.D. Auret, M.J. Legodi, M. Diale, The effect of high temperatures on the electrical characteristics of Au/n-GaAs Schottky diodes. Phys. B 480, 201–205 (2016)

    CAS  Google Scholar 

  44. S.B. Son, Y. Kim, B. Cho, C.-J. Choi, W.-K. Hong, Temperature-dependent electronic charge transport characteristics at MoS2/p-type Ge heterojunctions. J. Alloys Compd. 757, 221–227 (2018)

    CAS  Google Scholar 

  45. A. Karabulut, İ Orak, S. Canlı, N. Yıldırım, A. Türüt, Temperature-dependent electrical characteristics of Alq3/p-Si heterojunction. Phys. B 550, 68–74 (2018)

    CAS  Google Scholar 

  46. Z. Ouennoughi, S. Toumi, R. Weiss, Study of barrier inhomogeneities using I–V–T characteristics of Mo/4H–SiC Schottky diode. Phys. B 456, 176–181 (2015)

    CAS  Google Scholar 

  47. N. Hamdaoui, R. Ajjel, B. Salem, M. Gendry, Distribution of barrier heights in metal/n-InAlAs Schottky diodes from current–voltage–temperature measurements. Mater. Sci. Semicond. Process. 26, 431–437 (2014)

    CAS  Google Scholar 

  48. Ş Aydoğan, M. Sağlam, A. Türüt, Y. Onganer, Series resistance determination of Au/Polypyrrole/p-Si/Al structure by current–voltage measurements at low temperatures. Mater. Sci. Eng., C 29, 1486–1490 (2009)

    Google Scholar 

  49. A. Kocyigit, I. Orak, Z. Çaldıran, A. Turut, Current–voltage characteristics of Au/ZnO/n-Si device in a wide range temperature. J. Mater. Sci.: Mater. Electron. 28, 17177–17184 (2017)

    CAS  Google Scholar 

  50. I. Jyothi, V. Janardhanam, H. Hong, C. Choi, Materials science in semiconductor processing current–voltage and capacitance–voltage characteristics of Al Schottky contacts to strained Si-on-insulator in the wide temperature range. Mater. Sci. Semicond. Process. 39, 390–399 (2015)

    CAS  Google Scholar 

  51. S. Chand, J. Kumar, Current transport in Pd2 Si/n-Si (100) Schottky barrier diodes at low temperatures. Appl. Phys. A 63, 171–178 (1996)

    Google Scholar 

  52. V.R. Reddy, V. Janardhanam, C.-H. Leem, C.-J. Choi, Electrical properties and the double Gaussian distribution of inhomogeneous barrier heights in Se/n-GaN Schottky barrier diode. Superlattices Microstruct. 67, 242–255 (2014)

    Google Scholar 

  53. S. Huang, F. Lu, Investigation on the barrier height and inhomogeneity of nickel silicide Schottky. Appl. Surf. Sci. 252, 4027–4032 (2006)

    CAS  Google Scholar 

  54. S. Chand, J. Kumar, On the existence of a distribution of barrier heights in Pd2Si/Si Schottky diodes. J. Appl. Phys. 80, 288–294 (1996)

    CAS  Google Scholar 

  55. N. Yıldırım, A. Turut, M. Biber, M. Saglam, B. Guzeldir, The electrical current characteristics of thermally annealed Co/anodic oxide layer/n-GaAs sandwich structures. Int. J. Mod. Phys. B 33, 1950232 (2019)

    Google Scholar 

  56. J.H. Werner, H.H. Güttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522–1533 (1991)

    CAS  Google Scholar 

  57. M. Gülnahar, H. Efeoğlu, Double barrier nature of Au/p-GaTe Schottky contact: linearization of Richardson plot. Solid-State Electron. 53, 972–978 (2009)

    Google Scholar 

  58. K. Ejderha, A. Zengin, I. Orak, B. Tasyurek, T. Kilinc, A. Turut, Dependence of characteristic diode parameters on sample temperature in Ni/epitaxy n-Si contacts. Mater. Sci. Semicond. Process. 14, 5–12 (2011)

    CAS  Google Scholar 

  59. Z. Çaldıran, A.R. Deniz, Y. Şahin, Ö. Metin, K. Meral, Ş Aydoğan, The electrical characteristics of the Fe3O4/Si junctions. J. Alloys Compd. 552, 437–442 (2013)

    Google Scholar 

  60. A.G. Imer, Y.S. Ocak, Effect of light intensity and temperature on the current voltage characteristics of Al/SY/p-Si organic–inorganic heterojunction. J. Electron. Mater. 45, 5347–5355 (2016)

    CAS  Google Scholar 

  61. Z. Çaldıran, Pentacene/n-Si Heteroeklem Aygıtlarının Yapımı ve Karakterizasyonu. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9, 581–592 (2019)

    Google Scholar 

  62. V.R. Reddy, Electrical properties and conduction mechanism of an organic-modified Au/NiPc/n-InP Schottky barrier diode. Appl. Phys. A 116, 1379–1387 (2014)

    Google Scholar 

  63. Ö.F. Yüksel, N. Tuğluoğlu, B. Gülveren, H. Şafak, M. Kuş, Electrical properties of Au/perylene-monoimide/p-Si Schottky diode. J. Alloys Compd. 577, 30–36 (2013)

    Google Scholar 

  64. A.R. Deniz, Z. Çaldıran, Ö. Metin, K. Meral, Ş Aydoğan, The investigation of the electrical properties of Fe3O4/n-Si heterojunctions in a wide temperature range. J. Colloid Interface Sci. 473, 172–181 (2016)

    CAS  Google Scholar 

  65. H. Kaçuş, A.R. Deniz, Z. Çaldıran, Ş Aydoğan, A. Yesildag, D. Ekinci, The analysis of the current–voltage characteristics of the high barrier Au/Anthracene/n-Si MIS devices at low temperatures. Mater. Chem. Phys. 143, 545–551 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. O. Metin for his help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lütfi Bilal Taşyürek or Şakir Aydoğan.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşyürek, L.B., Aydoğan, Ş., Sevim, M. et al. Temperature dependent electronic transport properties of heterojunctions formed between perovskite SrTiO3 nanocubes and silicon. J Mater Sci: Mater Electron 31, 20833–20846 (2020). https://doi.org/10.1007/s10854-020-04597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04597-9

Navigation