Skip to main content

Advertisement

Log in

Fabrication of piezoelectric nanogenerator based on P(VDF-HFP) electrospun nanofiber mat-impregnated lead-free BCZT nanofillers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The replacement of energy harvesters by flexible, bendable, and environmentally benign materials could result in a significant breakthrough in wearable and portable electronics. In this context, polymeric nanocomposites consisting of organic polymer and inorganic nanoparticles are considered as suitable candidates that demonstrate enhanced performance as compared to their unmodified pristine polymeric counterparts. Herein, lead-free Ba0.85Ca0.15Zr0.05Ti0.95 (BCZT) nanoparticles were prepared by using the hydrothermal method and were impregnated within polymer matrix P(VDF-HFP) (poly(vinylidene fluoride-co-hexafluoropropylene) via electrospinning to enhance the electroactive β-phase. XRD peak profile analysis and FTIR spectrum signify the strong emergence of electroactive β-phase. The electrospun BCZT/P(VDF-HFP) nanofiber mat exhibits higher β-phase fraction of 70.3% as compared to pristine electrospun P(VDF-HFP) nanofiber mat which can be ascribed to the presence of interfacial interactions at the interface of inorganic nanoparticle surface and the dipoles of P(VDF-HFP) inducing the electroactive β-phase. The fabricated piezoelectric nanogenerator BCZT/P(VDF-HFP) exhibited an output voltage of 2.5 V which is much higher than that of pristine P(VDF-HFP) (1.0 V) due to in situ alignment of BCZT nanoparticles and higher β-phase fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Xu, T. Wu, J. Shi, K. Teng, W. Wang, M. Ma et al., Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. J. Membr. Sci. 520, 281–293 (2016)

    Article  CAS  Google Scholar 

  2. G.A. Kaur, M. Shandilya, P. Rana, S. Thakur, P. Uniyal, Modification of structural and magnetic properties of Co0.5Ni0.5Fe2O4 nanoparticles embedded polyvinylidene fluoride nanofiber membrane via electrospinning method. Nano-Struct. Nano-Objects 22, 100428 (2020)

    Article  CAS  Google Scholar 

  3. C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)

    Article  CAS  Google Scholar 

  4. Z-m Wang, K. Zhao, X-l Guo, W. Sun, H-l Jiang, X-q Han et al., Crystallization, phase evolution and ferroelectric properties of sol–gel-synthesized Ba(Ti0.8Zr0.2)O3–x(Ba0.7Ca0.3)TiO3 thin films. J. Mater. Chem. C 1, 522–530 (2013)

    Article  CAS  Google Scholar 

  5. P. Thomas, S. Satapathy, K. Dwarakanath, K. Varma, Dielectric properties of poly (vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym. Lett. 4, 632–643 (2010)

    Article  CAS  Google Scholar 

  6. S. Siddiqui, D.-I. Kim, M.T. Nguyen, S. Muhammad, W.-S. Yoon, N.-E. Lee, High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15, 177–185 (2015)

    Article  CAS  Google Scholar 

  7. S.K. Si, S.K. Karan, S. Paria, A. Maitra, A.K. Das, R. Bera et al., A strategy to develop an efficient piezoelectric nanogenerator through ZTO assisted γ-phase nucleation of PVDF in ZTO/PVDF nanocomposite for harvesting bio-mechanical energy and energy storage application. Mater. Chem. Phys. 213, 525–537 (2018)

    Article  CAS  Google Scholar 

  8. Y. Zhao, Q. Liao, G. Zhang, Z. Zhang, Q. Liang, X. Liao et al., High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 11, 719–727 (2015)

    Article  CAS  Google Scholar 

  9. N.R. Alluri, B. Saravanakumar, S.-J. Kim, Flexible, hybrid piezoelectric film (BaTi(1–x)ZrxO3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS Appl. Mater. Interfaces 7, 9831–9840 (2015)

    Article  CAS  Google Scholar 

  10. A. Patra, A. Pal, S. Sen, Polyvinylpyrrolidone modified barium zirconate titanate/polyvinylidene fluoride nanocomposites as self-powered sensor. Ceram. Int. 44, 11196–11203 (2018)

    Article  CAS  Google Scholar 

  11. K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu, M. Koo et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514–2520 (2014)

    Article  CAS  Google Scholar 

  12. S.-H. Shin, Y.-H. Kim, M.H. Lee, J.-Y. Jung, J. Nah, Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8, 2766–2773 (2014)

    Article  CAS  Google Scholar 

  13. T. Xu, Y. Ding, Z. Liang, H. Sun, F. Zheng, Z. Zhu et al., Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: methods, properties, and applications. Prog. Mater Sci. 112, 100656 (2020)

    Article  CAS  Google Scholar 

  14. W. Song, B. Zhao, C. Wang, X. Lu, Electrospun nanofibrous materials: a versatile platform for enzyme mimicking and their sensing applications. Compos. Commun. 12, 1–13 (2019)

    Article  Google Scholar 

  15. S. Li, Z. Cui, D. Li, G. Yue, J. Liu, H. Ding et al., Hierarchically structured electrospinning nanofibers for catalysis and energy storage. Compos. Commun. 13, 1–11 (2019)

    Article  Google Scholar 

  16. X. Chen, S. Xu, N. Yao, Y. Shi, 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010)

    Article  CAS  Google Scholar 

  17. A. Sultana, M.M. Alam, P. Sadhukhan, U.K. Ghorai, S. Das, T.R. Middya et al., Organo-lead halide perovskite regulated green light emitting poly (vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application. Nano Energy 49, 380–392 (2018)

    Article  CAS  Google Scholar 

  18. W. Wu, L. Cheng, S. Bai, W. Dou, Q. Xu, Z. Wei et al., Electrospinning lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires and their application in energy harvesting. J. Mater. Chem. A 1, 7332–7338 (2013)

    Article  CAS  Google Scholar 

  19. K.S. Chary, H.S. Panda, C.D. Prasad, Fabrication of large aspect ratio Ba0.85Ca0.15Zr0.1Ti0.9O3 superfine fibers-based flexible nanogenerator device: synergistic effect on curie temperature, harvested voltage, and power. Ind. Eng. Chem. Res. 56, 10335–10342 (2017)

    Article  CAS  Google Scholar 

  20. E. Chandrakala, B.K. Hazra, J.P. Praveen, D. Das, in Effect of aging on the piezoelectric properties of sol–gel derived lead-free BCZT ceramics, AIP Conference Proceedings (AIP Publishing, 2018), p. 060014

  21. P. Chomyen, R. Potong, R. Rianyoi, A. Ngamjarurojana, P. Chindaprasirt, A. Chaipanich, Microstructure, dielectric and piezoelectric properties of 0–3 lead free barium zirconate titanate ceramic-Portland fly ash cement composites. Ceram. Int. 44, 76–82 (2018)

    Article  CAS  Google Scholar 

  22. T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113–126 (2007)

    Article  CAS  Google Scholar 

  23. M. Shandilya, G.A. Kaur, Low temperature crystal growth of lead-free complex perovskite nano-structure by using sol–gel hydrothermal process. J. Solid State Chem. 280, 120988 (2019)

    Article  CAS  Google Scholar 

  24. M. Shandilya, R. Rai, A. Zeb, S. Kumar, Modification of structural and electrical properties of Ca element on barium titanate nano-material synthesized by hydrothermal method. Ferroelectrics 520, 93–109 (2017)

    Article  CAS  Google Scholar 

  25. M. Vijatović, J. Bobić, B. Stojanović, History and challenges of barium titanate: part I. Sci. Sinter. 40, 155–165 (2008)

    Article  CAS  Google Scholar 

  26. H. Althues, J. Henle, S. Kaskel, Functional inorganic nanofillers for transparent polymers. Chem. Soc. Rev. 36, 1454–1465 (2007)

    Article  CAS  Google Scholar 

  27. H. Qi, L. Fang, W. Xie, H. Zhou, Y. Wang, C. Peng, Study on the hydrothermal synthesis of barium titanate nano-powders and calcination parameters. J. Mater. Sci.: Mater. Electron. 26, 8555–8562 (2015)

    CAS  Google Scholar 

  28. H. Zheng, K. Zhu, Q. Wu, J. Liu, J. Qiu, Preparation and characterization of monodispersed BaTiO3 nanocrystals by sol–hydrothemal method. J. Cryst. Growth 363, 300–307 (2013)

    Article  CAS  Google Scholar 

  29. M. Shandilya, R. Rai, J. Singh, hydrothermal technology for smart materials. Adv. Appl. Ceram. 115, 354–376 (2016)

    Article  CAS  Google Scholar 

  30. F. Maxim, P. Ferreira, P.M. Vilarinho, I. Reaney, Hydrothermal synthesis and crystal growth studies of BaTiO3 using Ti nanotube precursors. Cryst. Growth Des. 8, 3309–3315 (2008)

    Article  CAS  Google Scholar 

  31. A. Baji, Y.-W. Mai, Q. Li, Y. Liu, Electrospinning induced ferroelectricity in poly (vinylidene fluoride) fibers. Nanoscale 3, 3068–3071 (2011)

    Article  CAS  Google Scholar 

  32. M. Shandilya, R. Rai, A. Zeb, Structural and dielectric relaxor properties of Ba1-xMgxTiO3 ceramics prepared through a hydrothermal route. Adv. Appl. Ceram. 117, 255–263 (2018)

    Article  CAS  Google Scholar 

  33. W.A. Yee, M. Kotaki, Y. Liu, X. Lu, Morphology, polymorphism behavior and molecular orientation of electrospun poly (vinylidene fluoride) fibers. Polymer 48, 512–521 (2007)

    Article  CAS  Google Scholar 

  34. H. Parangusan, D. Ponnamma, M.A.A. AlMaadeed, Flexible tri-layer piezoelectric nanogenerator based on PVDF-HFP/Ni-doped ZnO nanocomposites. RSC Adv. 7, 50156–50165 (2017)

    Article  CAS  Google Scholar 

  35. C. Muralidhar, P. Pillai, XRD studies on barium titanate (BaTiO3)/polyvinylidene fluoride (PVDF) composites. J. Mater. Sci. 23, 410–414 (1988)

    Article  CAS  Google Scholar 

  36. F. Fang, W. Yang, M. Zhang, Z. Wang, Mechanical response of barium-titanate/polymer 0–3 ferroelectric nano-composite film under uniaxial tension. Compos. Sci. Technol. 69, 602–605 (2009)

    Article  CAS  Google Scholar 

  37. A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  38. K.A. Aly, N. Khalil, Y. Algamal, Q.M. Saleem, Lattice strain estimation for CoAl2O4 nano particles using Williamson–Hall analysis. J. Alloys Compd. 676, 606–612 (2016)

    Article  CAS  Google Scholar 

  39. H. Kafashan, X-ray diffraction line profile analysis of undoped and Se-doped SnS thin films using Scherrer’s, Williamson–Hall and size–strain plot methods. J. Electron. Mater. 48, 1294–1309 (2019)

    Article  CAS  Google Scholar 

  40. M. Saadiah, D. Zhang, Y. Nagao, S. Muzakir, A. Samsudin, Reducing crystallinity on thin film based CMC/PVA hybrid polymer for application as a host in polymer electrolytes. J. Non-Cryst. Solids 511, 201–211 (2019)

    Article  CAS  Google Scholar 

  41. D. Mandal, K. Henkel, D. Schmeißer, Improved performance of a polymer nanogenerator based on silver nanoparticles doped electrospun P (VDF–HFP) nanofibers. Phys. Chem. Chem. Phys. 16, 10403–10407 (2014)

    Article  CAS  Google Scholar 

  42. S.K. Karan, D. Mandal, B.B. Khatua, Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 7, 10655–10666 (2015)

    Article  CAS  Google Scholar 

  43. D. Kumar, M. Suleman, S. Hashmi, Studies on poly (vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium–sulfur batteries. Solid State Ion. 202, 45–53 (2011)

    Article  CAS  Google Scholar 

  44. J. Xue, L. Wu, N. Hu, J. Qiu, C. Chang, S. Atobe et al., Evaluation of piezoelectric property of reduced graphene oxide (rGO)–poly (vinylidene fluoride) nanocomposites. Nanoscale 4, 7250–7255 (2012)

    Article  CAS  Google Scholar 

  45. S. Vinoth, G. Kanimozhi, K. Hari Prasad, K. Harish, E. Srinadhu, N. Satyanarayana, Enhanced ionic conductivity of electrospun nanocomposite (PVDF-HFP+TiO2 nanofibers fillers) polymer fibrous membrane electrolyte for DSSC application. Polym. Compos. 40, 1585–1594 (2019)

    Article  CAS  Google Scholar 

  46. H. Parangusan, D. Ponnamma, M.A.A. Al-Maadeed, Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci. Rep. 8, 1–11 (2018)

    Article  CAS  Google Scholar 

  47. A.S. ELmezayyen, F.M. Reicha, I.M. El-Sherbiny, J. Zheng, C. Xu, Significantly enhanced electroactive β phase crystallization and UV-shielding properties in PVDF nanocomposites flexible films through loading of ATO nanoparticles: synthesis and formation mechanism. Eur. Polym. J. 90, 195–208 (2017)

    Article  CAS  Google Scholar 

  48. S. Roy, P. Thakur, N.A. Hoque, B. Bagchi, S. Das, Enhanced electroactive β-phase nucleation and dielectric properties of PVdF-HFP thin films influenced by montmorillonite and Ni(OH)2 nanoparticle modified montmorillonite. RSC Adv. 6, 21881–21894 (2016)

    Article  CAS  Google Scholar 

  49. H.J. Ye, W.Z. Shao, L. Zhen, Crystallization kinetics and phase transformation of poly (vinylidene fluoride) films incorporated with functionalized baTiO3 nanoparticles. J. Appl. Polym. Sci. 129, 2940–2949 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Defense Research and Development Organization (DRDO), Govt. of India, for their financial support under the research project ERIP/ER/1303129/M/01/1564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Shandilya.

Ethics declarations

Conflict of interest

Authors state that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G.A., Kumar, S. & Shandilya, M. Fabrication of piezoelectric nanogenerator based on P(VDF-HFP) electrospun nanofiber mat-impregnated lead-free BCZT nanofillers. J Mater Sci: Mater Electron 31, 20303–20314 (2020). https://doi.org/10.1007/s10854-020-04550-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04550-w

Navigation