Skip to main content
Log in

Synthesis and characterization of high ionic-conductive sodium beta-alumina solid electrolyte derived from boehmite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, sodium beta-alumina solid electrolytes with high β″-Al2O3 content and high density are synthesized through solid-state reaction method employing boehmite as alumina sources. The influences of sodium oxide dosage on the phase component, texture structure, and ionic conductivity as well as the application performances in sodium ions battery for the synthesized beta-alumina electrolytes are investigated in detail. High β″-Al2O3 content of 94.6% and density of 97.8% are obtained for the electrolyte sinters through adding suitable excess of Na2O content, owing to the compensation of Na loss and the formation of molten state during the high-temperature sintering process. High ion conductivity of 1.16 × 10−2 S/cm at 350 °C is recorded for the beta-alumina electrolyte sinters, resulting from its high β″-Al2O3 content and density. The resultant beta-alumina electrolyte applied in Na3V2(PO4)3/Na battery delivers an initial discharge capacity of 80.5 mAh g−1 at 0.5 C and a high capacity retention of 79.25% after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. Wen, Z. Gu, X. Xu, J. Cao, F. Zhang, Z. Lin, Research activities in Shanghai Institute of Ceramics, Chinese Academy of Sciences on the solid electrolytes for sodium sulfur batteries. J. Power Sources 184(2), 641–645 (2008)

    Article  CAS  Google Scholar 

  2. J. Prakash, L. Redey, D.R. Vissers, Dynamic performance measurements of Na/NiCl2 cells for electric vehicle applications. J. Power Sources 87(1), 195–200 (2000)

    Article  CAS  Google Scholar 

  3. S. Ito, N. Kubo, N. Yoneda, Flux growth of potassium β-ferrite (K1+xFe11O17) with β-alumina structure. J. Cryst. Growth 71(1), 253–255 (1985)

    Article  CAS  Google Scholar 

  4. D.J. Fray, Determination of sodium in molten aluminum and aluminum alloys using a beta alumina probe. Metall. Trans. B 8(1), 153–156 (1977)

    Article  Google Scholar 

  5. G. Colucci, A. Negro, E. Visconte, C. Pijolat, R. Lalauze, Non-conventional syntheses of beta-alumina powders. Ceram. Int. 16(4), 225–229 (1990)

    Article  CAS  Google Scholar 

  6. X. Lu, G. Xia, J.P. Lemmon, Z. Yang, Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J. Power Sources 195(9), 2431–2442 (2010)

    Article  CAS  Google Scholar 

  7. C. Zhu, J. Xue, Structure and properties relationships of beta-Al2O3 electrolyte materials. J. Alloy. Compd. 517, 182–185 (2012)

    Article  CAS  Google Scholar 

  8. K. Chen, X.U. Xiaohe, Z. Lin, Preparation of Na-β-Al2O3 ceramics by reaction sintering method. J. Inorg. Mater. 12(5), 725–728 (1997)

    CAS  Google Scholar 

  9. Z. Wen, J. Cao, G.U. Zhonghua, X.U. Xiaohe, F. Zhang, Z. Lin, Research on sodium sulfur battery for energy storage. Solid State Ionics 179(27), 1697–1701 (2008)

    Article  CAS  Google Scholar 

  10. H. Li, H. Fan, G. Chen, J. Zhang, X. Jiang, Performance of Nano-3YSZ toughened β''-Alumina solid electrolyte prepared by EDTA-Zr(IV)/Y(III) complex as surface modifier. J. Alloy. Compd. 817, 152717 (2019)

    Article  Google Scholar 

  11. T. Mathews, Solution combustion synthesis of magnesium compensated sodium-β-aluminas. Mater. Sci. Eng. B 78(1), 39–43 (2000)

    Article  Google Scholar 

  12. T.C. Girija, A.V. Virkar, Low temperature electrochemical cells with sodium β″-alumina solid electrolyte (BASE). J. Power Sources 180(1), 653–656 (2008)

    Article  CAS  Google Scholar 

  13. H. Li, H. Fan, B. Wang, C. Wang, M. Zhang, G. Chen, X. Jiang, N. Zhao, J. Lu, J. Zhang, Mechanical and electrical properties of lithium stabilized sodium beta alumina solid electrolyte shaping by non-aqueous gelcasting. J. Eur. Ceram. Soc. 40(8), 3072–3079 (2020)

    Article  CAS  Google Scholar 

  14. C. Zhu, J. Xue, G. Ji, Effect of Na2O content on properties of beta alumina solid electrolytes. Mater. Sci. Semicond. Process. 31, 487–492 (2015)

    Article  CAS  Google Scholar 

  15. G. Chen, J. Lu, X. Zhou, L. Chen, X. Jiang, Solid-state synthesis of high performance Na-β″-Al2O3 solid electrolyte doped with MgO. Ceram. Int. 42(14), 16055–16062 (2016)

    Article  CAS  Google Scholar 

  16. G. Chen, J. Lu, L. Li, L. Chen, X. Jiang, Microstructure control and properties of beta''-Al2O3 solid electrolyte. J. Alloy. Compd. 673, 295–301 (2016)

    Article  CAS  Google Scholar 

  17. C. Zhu, Y. Hong, P. Huang, Synthesis and characterization of NiO doped beta-Al2O3 solid electrolyte. J. Alloy. Compd. 688, 746–751 (2016)

    Article  CAS  Google Scholar 

  18. D. Xu, H. Jiang, M. Li, O. Hai, Y. Zhang, Synthesis and characterization of Y2O3 doped Na–β″-Al2O3 solid electrolyte by double zeta process. Ceram. Int. 41(4), 5355–5361 (2015)

    Article  CAS  Google Scholar 

  19. L. Ghadbeigi, A. Szendrei, P. Moreno, T.D. Sparks, A.V. Virkar, Synthesis of iron-doped Na- β″-alumina + yttria-stabilized zirconia composite electrolytes by a vapor phase process. Solid State Ionics 290, 77–82 (2016)

    Article  CAS  Google Scholar 

  20. S. Barison, S. Fasolin, C. Mortalò, S. Boldrini, M. Fabrizio, Effect of precursors on β-alumina electrolyte preparation. J. Eur. Ceram. Soc. 35(7), 2099–2107 (2015)

    Article  CAS  Google Scholar 

  21. A. van Zyl, M.M. Thackeray, G.K. Duncan, A.I. Kingon, R.O. Heckroodt, The synthesis of beta alumina from aluminium hydroxide and oxyhydroxide precursors. Mater. Res. Bull. 28(2), 145–157 (1993)

    Article  Google Scholar 

  22. S.J. Wilson, The dehydration of boehmite, γ-AlOOH, to γ-Al2O3. J. Solid State Chem. 30(2), 247–255 (1979)

    Article  CAS  Google Scholar 

  23. N. Zhao, H. Fan, X. Ren, J. Ma, J. Bao, Y. Guo, Y. Zhou, Dielectric, impedance and piezoelectric properties of (K0.5Nd0.5)TiO3-doped 0.67BiFeO3–0.33BaTiO3 ceramics. J. Eur. Ceram. Soc. 39(14), 4096–4102 (2019)

    Article  CAS  Google Scholar 

  24. M. Pivko, I. Arcon, M. Bele, R. Dominko, M. Gaberscek, A3V2(PO4)3 (A = Na or Li) probed by in situ X-ray absorption spectroscopy. J. Power Sources 216(11), 145–151 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by the National Natural Science Foundation of China (no. 51777138), Natural Science Foundation of Tianjin City (nos. 18JCZDJC99700, 18JCYBJC87400 and 18JCQNJC73900), and Scientific Developing Foundation of Tianjin Education Commission (no. 2018KJ130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Chen or Zhiyong Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Chen, J., Wang, X. et al. Synthesis and characterization of high ionic-conductive sodium beta-alumina solid electrolyte derived from boehmite. J Mater Sci: Mater Electron 31, 17670–17678 (2020). https://doi.org/10.1007/s10854-020-04321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04321-7

Navigation