Skip to main content
Log in

Fabrication of high thermal conductive epoxy composite by adding hybrid of expanded graphite, iron (III) oxide, and silver flakes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermally conductive epoxy adhesive composites have been fabricated by adding a tri-filler mixture of expanded graphite (EG), iron (III) oxide (Fe3O4), and silver (Ag) flakes with increasing concentration from 20 to 50 weight percent. The epoxy composite containing mixed filler of EG/Fe/Ag at 50 wt% has demonstrated diminutive higher thermal conductivity (TC) (4.85 W/mK) when compared to composite filled with EG/Fe hybrid (4.82 W/mK) at equivalent filler % which was about 25 fold improvement than epoxy unaided. The crystallography of the graphite flakes (GF), EG, neat epoxy, EG/Fe/Ag-epoxy, and EG/Fe-epoxy adhesive composites has been analyzed by X-ray diffraction (XRD) technique. The morphology of filler (EG and EG/Fe/Ag) and fractured surface analysis of corresponding epoxy composite has been carried out by scanning electron microscopy. The bonding strength through lap shear test of epoxy adhesives with the addition of 50 wt% of EG/Fe/Ag mixed and EG/Fe hybrid fillers has been displayed a decreased value as compared to neat epoxy. At the primary phase analysis of thermal dilapidation, the thermo-gravimetric analysis (TGA) concluded a negative effect on the thermal constancy of epoxy composites at higher assimilation (> 35 wt%) of EG, Fe3O4, and Ag mixed fillers. The damping factor (tan δ) (0.44 and 0.43) and glass transition temperature of composite demonstrated lower value (70 and 64 °C) when 50 wt% of EG/Fe and EG/Fe/Ag were added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016). https://doi.org/10.1016/j.progpolymsci.2016.05.001

    Article  CAS  Google Scholar 

  2. Y.X. Fu, Z.X. He, D.C. Mo, S.S. Lu, Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl. Therm. Eng. 66, 493–498 (2014). https://doi.org/10.1016/j.applthermaleng.2014.02.044

    Article  CAS  Google Scholar 

  3. A.K. Singh, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, Study on metal decorated oxidized multiwalled carbon nanotube (MWCNT)-epoxy adhesive for thermal conductivity applications. J. Mater. Sci. 28, 8908–8920 (2017). https://doi.org/10.1007/s10854-017-6621-3

    Article  CAS  Google Scholar 

  4. Y. Zemen, S.C. Schulz, H. Trommler, S.T. Buschhorn, W. Bauhofer, K. Schulte, Comparison of new conductive adhesives based on silver and carbon nanotubes for solar cells interconnection. Sol. Energy Mater. Sol. Cells 109, 155–159 (2013). https://doi.org/10.1016/j.solmat.2012.10.020

    Article  CAS  Google Scholar 

  5. L. Diaz-Chacon, R. Metz, P. Dieudonné, J.L. Bantignies, S. Tahir, M. Hassanzadeh, E. Sosa, R. Atencio, Graphite nanoplatelets composite materials: role of the epoxy-system in the thermal conductivity. J. Mater. Sci. Chem. Eng. 3, 75 (2015). https://doi.org/10.4236/msce.2015.35009

    Article  CAS  Google Scholar 

  6. T. Zhou, X. Wang, P. Cheng, T. Wang, D. Xiong, X. Wang, Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles. Express Polym. Lett. 7, 585–594 (2013). https://doi.org/10.3144/expresspolymlett.2013.56

    Article  CAS  Google Scholar 

  7. C. Li, Q. Li, L. Cheng, T. Li, H. Lu, L. Tang, K. Zhang, E. Songfeng, J. Zhang, Z. Li, Y. Yao, Conductivity enhancement of polymer composites using high-temperature short-time treated silver fillers. Compos. A 100, 64–70 (2017). https://doi.org/10.1016/j.compositesa.2017.05.007

    Article  CAS  Google Scholar 

  8. H. Gao, L. Liu, K. Liu, Y. Luo, D. Jia, J. Lu, Preparation of highly conductive adhesives by in situ generated and sintered silver nanoparticles during curing process. J. Mater. Sci. 23, 22–30 (2012). https://doi.org/10.1016/j.compositesa.2017.05.007

    Article  CAS  Google Scholar 

  9. S.K. Nayak, S. Mohanty, S.K. Nayak, Silver (Ag) nanoparticle-decorated expanded graphite (EG) epoxy composite: evaluating thermal and electrical properties. J. Mater. Sci. 30(23), 20574–20587 (2019). https://doi.org/10.1007/s10854-019-02423-5

    Article  CAS  Google Scholar 

  10. M.A. Raza, A. Westwood, C. Stirling, Comparison of carbon nanofiller-based polymer composite adhesives and pastes for thermal interface applications. Mater. Des. 85, 67–75 (2015). https://doi.org/10.1016/j.matdes.2015.07.008

    Article  CAS  Google Scholar 

  11. A. Yasmin, I.M. Daniel, Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45, 8211–8219 (2004). https://doi.org/10.1016/j.polymer.2004.09.054

    Article  CAS  Google Scholar 

  12. A. Yasmin, J.J. Luo, I.M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol. 66, 1182–1189 (2006). https://doi.org/10.1016/j.compscitech.2005.10.014

    Article  CAS  Google Scholar 

  13. S.K. Nayak, S. Mohanty, S.K. Nayak. A new way synthesis of expanded graphite as a thermal filler to enhance the thermal conductivity of DGEBA resin as thermal interface material. High Perform. Polym. 0954008319884616 (2019)

  14. S. Gantayat, G. Prusty, D.R. Rout, S.K. Swain, Expanded graphite as a filler for epoxy matrix composites to improve their thermal, mechanical and electrical properties. New Carbon Mater. 30, 432–437 (2015). https://doi.org/10.1016/S1872-5805(15)60200-1

    Article  CAS  Google Scholar 

  15. S. Dou, J. Qi, X. Guo, C. Yu, Preparation and adhesive performance of electrical conductive epoxy-acrylate resin containing silver-plated graphene. J. Adhes. Sci. Technol. 28, 1556–1567 (2014). https://doi.org/10.1080/01694243.2014.904766

    Article  CAS  Google Scholar 

  16. B. Debelak, K. Lafdi, Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45, 1727–1734 (2007). https://doi.org/10.1016/j.carbon.2007.05.010

    Article  CAS  Google Scholar 

  17. J. Emerson, M. Rightley, J. Galloway, D. Huber, D. Rae, E. Cotts, Minimizing the bondline thermal resistance in thermal interface materials without affecting reliability (2006)

  18. W. Park, Y. Guo, X. Li, J. Hu, L. Liu, X. Ruan, Y.P. Chen, High-performance thermal interface material based on few-layer graphene composite. J. Phys. Chem. C 119, 26753–26759 (2015). https://doi.org/10.1021/acs.jpcc.5b08816

    Article  CAS  Google Scholar 

  19. K. Diharjo, M. Anwar, R.A.P. Tarigan, A. Rivai, Effect of adhesive thickness and surface treatment on shear strength on single lap joint Al/CFRP using adhesive of epoxy/Al fine powder. AIP Conf. Proc. 1710, 030030 (2016). https://doi.org/10.1063/1.4941496

    Article  CAS  Google Scholar 

  20. S.K. Nayak, S. Mohanty, S.K. Nayak, Decomposed copper (II) acetate over expanded graphite (EG) as hybrid filler to fabricate epoxy based thermal interface materials (TIMs). J. Electron. Mater. 49(1), 34–47 (2020). https://doi.org/10.1007/s11664-019-07753-y

    Article  CAS  Google Scholar 

  21. D. Ding, X. Yan, X. Zhang, Q. He, B. Qiu, D. Jiang, H. Wei, J. Guo, A. Umar, L. Sun, Q. Wang, Preparation and enhanced properties of Fe3O4 nanoparticles reinforced polyimide nanocomposites. Superlattices Microstruct. 85, 305–320 (2015). https://doi.org/10.1016/j.spmi.2015.03.008

    Article  CAS  Google Scholar 

  22. T.B. Sharmila, J.V. Antony, M.P. Jayakrishnan, P.S. Beegum, E.T. Thachil, Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide. Mater. Des. 90, 66–75 (2016). https://doi.org/10.1016/j.matdes.2015.10.055

    Article  CAS  Google Scholar 

  23. I. Novák, I. Krupa, Electro-conductive resins filled with graphite for casting applications. Eur. Polym. J. 40, 1417–1422 (2004). https://doi.org/10.1016/j.eurpolymj.2004.01.033

    Article  CAS  Google Scholar 

  24. N. Xiong, Z. Li, H. Xie, Y. Zhao, M. Li, Y. Wang, J. Li, Synthesis and electrical properties of silver nanoplates for electronic applications. Mater. Sci. 33, 242–250 (2015). https://doi.org/10.1515/msp-2015-0032

    Article  CAS  Google Scholar 

  25. R. Kumar, S. Mohanty, S.K. Nayak, Study on epoxy resin based thermal adhesive composite incorporated with expanded graphite/silver flake hybrids. Mater. Today Commun. (2019). https://doi.org/10.1016/j.mtcomm.2019.100561

    Article  Google Scholar 

  26. S.K. Nayak, S. Mohanty, S.K. Nayak, Thermal, electrical and mechanical properties of expanded graphite and micro-SiC filled hybrid epoxy composite for electronic packaging applications. J. Electron. Mater. 49(1), 212–225 (2020)

    Article  CAS  Google Scholar 

  27. L. Chen, P. Zhao, H. Xie, W. Yu, Thermal properties of epoxy resin based thermal interfacial materials by filling Ag nanoparticle-decorated graphene nanosheets. Compos. Sci. Technol. 125, 17–21 (2016). https://doi.org/10.1016/j.compscitech.2016.01.011

    Article  CAS  Google Scholar 

  28. X. Peng, F. Tan, W. Wang, X. Qiu, F. Sun, X. Qiao, J. Chen, Conductivity improvement of silver flakes filled electrical conductive adhesives via introducing silver–graphene nanocomposites. J. Mater. Sci. 25, 1149–1155 (2014). https://doi.org/10.1007/s10854-013-1671-7

    Article  CAS  Google Scholar 

  29. M. Gazderazi, M. Jamshidi, Hybridizing MWCNT with nano metal oxides and TiO2 in epoxy composites: influence on mechanical and thermal performances. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43834

    Article  Google Scholar 

  30. F. Khodayari, M. Jamshidi, Influence of MWCTs and nanometal oxide/MWCTs hybrids on the thermal conduction of their acrylic-based nanocomposites. Iran. Polym. J. 25, 243–250 (2016). https://doi.org/10.1002/app.43834

    Article  CAS  Google Scholar 

  31. W. Lin, X. Xi, C. Yu, Research of silver plating nano—graphite filled conductive adhesive. Synth. Met. 159, 619–624 (2009). https://doi.org/10.1016/j.synthmet.2008.12.003

    Article  CAS  Google Scholar 

  32. M. Casa, S. Huang, P. Ciambelli, N. Wang, L. Ye, J. Liu, Development and characterization of graphene-enhanced thermal conductive adhesives. in ‘15th International Conference on Electronic Packaging Technology. (Chengdu, China’, 2014), pp. 480–483. https://doi.org/10.1109/ICEPT.2014.692270

  33. J. Gu, X. Yang, Z. Lv, N. Li, C. Liang, Q. Zhang, Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int. J. Heat Mass Transf. 92, 15–22 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.081

    Article  CAS  Google Scholar 

  34. H.W. Cui, A. Kowalczyk, D.S. Li, Q. Fan, High performance electrically conductiveadhesives from functional epoxy, micron silver flakes, micron silver spheres and acidified single wall carbon nanotube for electronic package. Int. J. Adhes. Adhes. 44, 220–225 (2013). https://doi.org/10.1016/j.ijadhadh.2013.03.004

    Article  CAS  Google Scholar 

  35. I. Novák, I. Krupa, I. Chodák, Electroconductive adhesives based on epoxy and polyurethane resins filled with silver-coated inorganic fillers. Synth. Met. 144, 13–19 (2004). https://doi.org/10.1016/j.synthmet.2004.01.001

    Article  CAS  Google Scholar 

  36. W. Bian, T. Yao, M. Chen, C. Zhang, T. Shao, Y. Yang, The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Compos. Sci. Technol. 168, 420–428 (2018). https://doi.org/10.1016/j.compscitech.2018.10.002

    Article  CAS  Google Scholar 

  37. L. Du, S.C. Jana, Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells. J. Power Sources 172, 734–741 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.088

    Article  CAS  Google Scholar 

  38. H.W. Cui, D.S. Li, Q. Fan, H.X. Lai, Electrical and mechanical properties of electrically conductive adhesives from epoxy, micro-silver flakes, and nano-hexagonal boron nitride particles after humid and thermal aging. Int. J. Adhes. Adhes. 44, 232–236 (2013). https://doi.org/10.1016/j.ijadhadh.2013.03.007

    Article  CAS  Google Scholar 

  39. K. Pashayi, H.R. Fard, F. Lai, S. Iruvanti, J. Plawsky, T. Borca-Tasciuc, High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks. J. Appl. Phys. 111, 104310/1 (2012). https://doi.org/10.1063/1.4716179

    Article  CAS  Google Scholar 

  40. G. Suriati, M. Mariatti, A. Azizan, Silver-filled epoxy composites: effect of hybrid and silane treatment on thermal properties. Polym. Bull. 70, 311–323 (2013). https://doi.org/10.1007/s00289-012-0808-9

    Article  CAS  Google Scholar 

  41. Y. Li, B. Li, W. Chen, A study on the reactive diluent for the solvent-free epoxy anticorrosive coating. J. Chem. Pharm. Res. 6, 2466–2469 (2014)

    CAS  Google Scholar 

  42. M. Inoue, J. Liu, Electrical and thermal properties of electrically conductive adhesives using a heat-resistant epoxy binder. in Electronics System-Integration Technology Conference (Greenwich, UK, 2008), pp. 1147–1152. https://doi.org/10.1109/ESTC.2008.4684514

  43. H.R. Ong, M.M.R. Khan, R. Ramli, R.M. Yunus, Effect of CuO nanoparticle on mechanical and thermal properties of palm oil based alkyd/epoxy resin blend. Procedia Chem. 16, 623–631 (2015). https://doi.org/10.1016/j.proche.2015.12.101

    Article  CAS  Google Scholar 

  44. K. Kumar, P.K. Ghosh, A. Kumar, Improving mechanical and thermal properties of TiO2-epoxy nanocomposite. Compos. B Eng. 97, 353–360 (2016). https://doi.org/10.1016/j.compositesb.2016.04.080

    Article  CAS  Google Scholar 

  45. D. Bikiaris, Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim. Acta 523, 25–45 (2011). https://doi.org/10.1016/j.tca.2011.06.012

    Article  CAS  Google Scholar 

  46. A.K. Singh, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, Synergistic effect of hybrid graphene and boron nitride on the cure kinetics and thermal conductivity of epoxy adhesives. Polym. Adv. Technol. 28, 1851–1864 (2017). https://doi.org/10.1002/pat.4072

    Article  CAS  Google Scholar 

  47. S.K. Nayak, D. Mohanty, Silver nanoparticles decorated α-alumina as a hybrid filler to fabricate epoxy-based thermal conductive hybrid composite for electronics packaging application. J. Adhes. Sci. Technol. (2020). https://doi.org/10.1080/01694243.2020.1714138

    Article  Google Scholar 

  48. W. Cui, F. Du, J. Zhao, W. Zhang, Y. Yang, X. Xie, Y.W. Mai, Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon 49, 495–500 (2011). https://doi.org/10.1016/j.carbon.2010.09.047

    Article  CAS  Google Scholar 

  49. H.K. Juwhari, A. Zihlif, Z. Elimat, G. Ragosta, A study on the DC-electrical and thermal conductivities of epoxy/ZnO composites doped with carbon black. Radiat. Eff. Defects Solids 169, 560–572 (2014). https://doi.org/10.1080/10420150.2014.905944

    Article  CAS  Google Scholar 

  50. F. Wang, X. Zeng, Y. Yao, R. Sun, J. Xu, C.P. Wong, Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity. Sci. Rep. 6, 19394/-19394/9 (2016). https://doi.org/10.1038/srep19394

    Article  CAS  Google Scholar 

  51. J. Wu, J. Wang, F. Chen, Preparation of poly (p-phenylene sulfide)/carbon composites with enhanced thermal conductivity and electrical insulativity via hybrids of boron nitride and carbon fillers. J. Wuhan Univ. Technol. 30, 562–567 (2015). https://doi.org/10.1007/s11595-015-1189-3

    Article  CAS  Google Scholar 

  52. J. Li, X. Li, Y. Zheng, Z. Liu, Q. Tian, X. Liu, New underfill material based on copper nanoparticles coated with silica for high thermally conductive and electrically insulating epoxy composites. J. Mater. Sci. 54, 6258–6271 (2019). https://doi.org/10.1007/s10853-019-03335-9

    Article  CAS  Google Scholar 

  53. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, R.C. Haddon, Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv. Mater. 20, 4740–4744 (2008). https://doi.org/10.1002/adma.200800401

    Article  CAS  Google Scholar 

  54. K. Kim, H. Ju, J. Kim, Surface modification of BN/Fe3O4 hybrid particle to enhance interfacial affinity for high thermal conductive material. Polymer 91, 74–80 (2016). https://doi.org/10.1016/j.polymer.2016.03.066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Kumar Nayak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Nayak, S.K. Fabrication of high thermal conductive epoxy composite by adding hybrid of expanded graphite, iron (III) oxide, and silver flakes. J Mater Sci: Mater Electron 31, 16008–16019 (2020). https://doi.org/10.1007/s10854-020-04163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04163-3

Navigation