Skip to main content
Log in

Low-temperature hydrogen detection sensor based on CeO2 -DOPED SnO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cost-effective H2 detection sensors based on pure and CeO2 (0.5 at%, 1 at%, 1.5 at%, 2 at%, 3 at%, 4 at%)-doped SnO2 semiconductor oxides with both high moisture resistance and low operation temperature were prepared by a simple method. The crystal phase, morphology, and chemical composition of the obtained CeO2-doped SnO2 sample were analyzed and related with the sensing properties. The results show that the H2 sensing performance of pure SnO2 gas sensor can be improved a lot by CeO2 doping. In particular, gas sensors based on 2 at% CeO2/SnO2 exhibited the greatest performance: high responsiveness at 160 °C (23.7 for 50 ppm hydrogen), about 3 times higher than pure SnO2 sensor (6.9); short response and recovery time (2 and 9 s); good repeatability and long-term stability without any change after 30 days (23.7 for 50 ppm hydrogen), good selectivity, and moisture resistance. Finally, the function of CeO2 on SnO2 gas sensor for H2 detection is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Abbasi, S.A. Abbasi, ‘Renewable’ hydrogen: prospects and challenges. Renew. Sustain. Energy Rev. 15, 3034–3040 (2011)

    Article  Google Scholar 

  2. J. Hord, Is hydrogen a safe fuel. Int. J. Hydrogen Energy. 3, 157–176 (1978)

    Article  CAS  Google Scholar 

  3. R.G. Reddy, Fuel cell and hydrogen economy. J. Mater Eng. Perform. 15, 474–483 (2006)

    Article  CAS  Google Scholar 

  4. X. Cheng, Z. Shi, N. Glass, L. Zhang, J.J. Zhang, D.T. Song, A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J. Power Sources. 165, 739–756 (2007)

    Article  CAS  Google Scholar 

  5. K.J. Yoon, S.I. Lee, H. An, J. Kim, J.W. Son, J.H. Lee, H.J. Je, H.W. Lee, B.K. Kim, Gas-transport in hydrogen electrode of solid oxide regenerative fuel cells for power generation and hydrogen production. Int. J. Hydrogen Energy. 39, 3868–3878 (2014)

    Article  CAS  Google Scholar 

  6. M.H. Yacob, M.Z. Ahmad, A.Z. Sadek, J.Z. Ou, J. Campbell, K. Kalantarzadeh, Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration. Sens. Actuators B. 177, 981–988 (2013)

    Article  Google Scholar 

  7. X. Gao, T. Zhang, An overview: facet-dependent metal oxide semiconductor gas sensors. Sens. Actuators: B. 277, 604–633 (2018)

    Article  CAS  Google Scholar 

  8. J.W. Shin, S.J. Choi, I.K. Lee, D.Y. Youn, C.O. Park, J.H. Lee, H.L. Tuller, I.D. Kim, Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv. Funct. Mater. 23, 2357–2367 (2013)

    Article  CAS  Google Scholar 

  9. L.L. Wang, T. Fei, J.N. Deng, Z. Lou, R. Wang, T. Zhang, Synthesis of rattle-type SnO2 structures with porous shells. J. Mater. Chem. 22, 18111–18114 (2012)

    Article  CAS  Google Scholar 

  10. L.L. Wang, H.M. Dou, Z. Lou, T. Zhang, En-capsuled nano-reactors (Au@SnO2): a new sensing material for chemical sensors. Nanoscale. 5, 2686–2691 (2013)

    Article  CAS  Google Scholar 

  11. Z.H. Jing, J.H. Zhan, Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 20, 4547–4551 (2008)

    Article  CAS  Google Scholar 

  12. S.H. Park, S.Y. An, H.S. Ko, C.H. Jin, C.M. Lee, Synthesis of nano-grained ZnO nanowires and their enhanced gas sensing properties. ACS Appl. Mater. Interfaces. 4, 3650–3656 (2012)

    Article  CAS  Google Scholar 

  13. S.Q. Tian, F. Yang, D.W. Zeng, C.S. Xie, Solution-processed gas sensors based on ZnO nanorods array with an exposed (001) facet for enhanced gas-sensing properties. J. Phys. Chem. C. 116, 10586–10591 (2012)

    Article  CAS  Google Scholar 

  14. J. Bai, B.X. Zhou, Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 114, 10131–10176 (2014)

    Article  CAS  Google Scholar 

  15. P.G. Hu, G.J. Du, W.J. Zhou, J.J. Cui, J.J. Lin, H. Liu, D. Liu, J.Y. Wang, S.W. Chen, Enhancement of ethanol vapor sensing of TiO2 nanobelts by surface engineering. ACS Appl. Mater. Interfaces 2, 3263–3269 (2010)

    Article  CAS  Google Scholar 

  16. C.X. Wang, L.W. Yin, L.Y. Zhang, Y.X. Qi, N. Lun, N.N. Liu, Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures. Langmuir 26, 12841–12848 (2010)

    Article  CAS  Google Scholar 

  17. E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernández-Ramírez, F. Peiró, A. Cornet, J.R. Morante, L.A. Solovyov, B. Tian, T. Bo, D. Zhao, Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas sensing applications. Adv. Funct. Mater. 17, 2801–2806 (2007)

    Article  Google Scholar 

  18. S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, J.H. Kim, P.S. Patil, Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B Chem. 240, 426–433 (2017)

    Article  CAS  Google Scholar 

  19. S.J. Choi, S. Chattopadhyay, J.J. Kim, S.J. Kim, H.L. Tuller, G.C. Rutledge, I.D. Kim, Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale 8, 9159–9166 (2016)

    Article  CAS  Google Scholar 

  20. X.X. Xu, J. Zhuang, X. Wang, SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J. Am. Chem. Soc. 130, 12527–12535 (2008)

    Article  CAS  Google Scholar 

  21. X.G. Han, M.S. Jin, S.F. Xie, Q. Kuang, Z.Y. Jiang, Y.Q. Jiang, Z.X. Xie, L.S. Zheng, Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed. 48, 9180–9183 (2009)

    Article  CAS  Google Scholar 

  22. J.Y. Liu, M.J. Dai, T.S. Wang, P. Sun, X.S. Liang, G.Y. Lu, K. Shimanoe, N. Yamazoe, Enhanced gas sensing properties of SnO2 hollow spheres decorated with CeO2 nanoparticles hetero-structure composite materials. ACS Appl. Mater. Interfaces. 8, 6669–6677 (2016)

    Article  CAS  Google Scholar 

  23. J. Hu, Y.J. Sun, Y. Xue, Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sens. Actuators B. 257, 124–135 (2018)

    Article  CAS  Google Scholar 

  24. K. Katsuki, K. Fukui, H2 selective gas sensor based on SnO2. Sens. Actuators B 52, 30–37 (1998)

    Article  CAS  Google Scholar 

  25. R. Huck, U. Bcttger, D. Kohl, G. Heiland, Spillover effects in the detection of H2 and CH4 by sputtered SnO2 films with Pd and PdO deposits. Sens. Actuators B 17, 355–359 (1989)

    Article  CAS  Google Scholar 

  26. N. V. Toan, N. V. Chien, N. V. Duy, Hong. S. H, H. Nguyen, et al. Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with micro-sized Pd islands. J Hazard Mater. 301, 433–442 (2016)

  27. S.F. Bamsaoud, S.B. Rane, R.N. Karekar, R.C. Aiyer, Mater. Chem. Phys 133, 681–687 (2012)

    Article  CAS  Google Scholar 

  28. Y.F. Luo, C. Zhang, B.B. Zheng, X. Geng, M. Debliquy, Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int. J. Hydrogen Energy 42, 20386–20397 (2017)

    Article  CAS  Google Scholar 

  29. J.Y. Liu, M.J. Dai, T.S. Wang, P. Sun, X.S. Liang, G.Y. Lu, Kengo Shimanoe, and Noboru Yamazoe, enhanced gas sensing properties of SnO2 hollow spheres decorated with CeO2 nanoparticles hetero-structure composite materials. ACS Appl. Mater. Interfaces. 8, 6669–6677 (2016)

    Article  CAS  Google Scholar 

  30. M. Batzill, K. Katsiev, J.M. Burst, U. Diebold, Gas-phase-dependent properties of SnO2(110), (100), and (101) single-crystal surfaces: structure, composition, and electronic properties. Phys. Rev. B. 72, 165414 (2005)

    Article  Google Scholar 

  31. D.E. Motaung, G.H. Mhlongo, P.R. Makgwane, B.P. Dhonge, F.R. Cummings, H.C. Swart, S.S. Ray, Ultra-high sensitive and selective H2 gas sensor manifested by interface of n–n hetero-structure of CeO2-SnO2 nanoparticles. Sens. Actuators B. 254, 984–999 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Key Research and Development Program of China (2017YFB0102900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaqiang Xu or Xiaohong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, H., Sun, Y., Zeng, Z. et al. Low-temperature hydrogen detection sensor based on CeO2 -DOPED SnO2. J Mater Sci: Mater Electron 31, 15785–15793 (2020). https://doi.org/10.1007/s10854-020-04141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04141-9

Navigation