Skip to main content

Advertisement

Log in

An investigation of the improvement in energy storage performance of Na2/3Mn1/2Fe1/2O2 by systematic Al-substitution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We successfully fabricated Na2/3Mn1/2Fe1/2−xAlxO2, where x = 0, 0.01, … 0.10, by a modified solid-state reaction technique. The structural properties of the Al-substituted samples were investigated by x-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy and x-ray absorption fine structure (XAFS) measurements. It was found that there were no impurity phases in the XRD patterns of the samples and they fit the P63/mmc symmetry. The Al substitution in Na2/3Mn1/2Fe1/2O2 causes a decrease in the a-lattice parameter, but the c-parameter starts to increase after a certain substitution value of Al. We suggest that a certain proportion of Al in the samples triggers the change of the spin configuration of the Fe ions, and it may cause an increase in the lattice parameters. The size of the grains was found to be less than 0.9 µm, from SEM images for all samples. The valence states of the substituted samples as well as the local structure around Fe and Mn were investigated by means of XAFS measurements. The highest capacity for the first cycle was obtained as 134.3 mAh/g for x = 0.07, and the best capacity fade was found to be 0.23 for x = 0.08 substitution. So, the highest performance of the Al-substituted cells was found when 0.08 ≥ x ≥ 0.06. The environmental temperature effects on the battery cells were determined at 10 ºC, room temperature and 50 ºC, and it was found that the temperature plays a crucial role in the Na-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. (2012). https://doi.org/10.1038/nmat3309

    Article  Google Scholar 

  2. J. Xu, S.L. Chou, J.L. Wang, H.K. Liu, S.X. Dou, Layered P2-Na0.66Fe0.5Mn0.5O2 cathode material for rechargeable sodium-ion batteries. ChemElectroChem (2014). https://doi.org/10.1002/celc.201300026

    Article  Google Scholar 

  3. J.K. Park, G.G. Park, H.H. Kwak, S.T. Hong, J.W. Lee, Enhanced rate capability and cycle performance of titanium-substituted P2-type Na0.67Fe0.5Mn0.5O2 as a cathode for sodium-ion batteries. ACS Omega 3, 361–368 (2017). https://doi.org/10.1021/acsomega.7b01481

    Article  CAS  Google Scholar 

  4. S. Chu, Y. Chen, J. Wang, J. Dai, K. Liao, W. Zhou, Z. Shao, A cobalt and nickel co-modified layered P2-Na2/3Mn1/2Fe1/2O2 with excellent cycle stability for high-energy density sodium-ion batteries. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.10.150

    Article  Google Scholar 

  5. B. Mortemard de Boisse, D. Carlier, M. Guignard, C. Delmas, Structural and electrochemical characterizations of P2 and new O3-NaxMn1-yFeyO2 phases prepared by auto-combustion synthesis for Na-ion batteries. J. Electrochem. Soc. (2013). https://doi.org/10.1149/2.032304jes

    Article  Google Scholar 

  6. G. Singh, J.M. López, M. Del Amo, S. Galceran, T. Pérez-Villar, Rojo, Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2. J. Mater. Chem. A. (2015). https://doi.org/10.1039/c4ta06360k

    Article  Google Scholar 

  7. V. Duffort, E. Talaie, R. Black, L.F. Nazar, Uptake of CO2 in Layered P2-Na0.67Mn0.5Fe0.5O2: insertion of carbonate anions. Chem. Mater (2015). https://doi.org/10.1021/acs.chemmater.5b00097

    Article  Google Scholar 

  8. R. Malik, D. Burch, M. Bazant, G. Ceder, Particle size dependence of the ionic diffusivity. Nano Lett. (2010). https://doi.org/10.1021/nl1023595

    Article  Google Scholar 

  9. M.H. Han, B. Acebedo, E. Gonzalo, P.S. Fontecoba, S. Clarke, D. Saurel, T. Rojo, Synthesis and electrochemistry study of P2- and O3-phase Na2/3Fe1/2Mn1/2O2. Electrochim. Acta. (2015). https://doi.org/10.1016/j.electacta.2015.10.003

    Article  Google Scholar 

  10. M. Guan, J. Chen, X. Zhang, L. Yang, B. Wang, S. Zhong, Yarn-ball-shaped P2-Na2/3Fe1/2Mn1/2O2 nanofibers prepared by magnetic-assisted electrospinning method as high-performance cathode material for Na-ion batteries. Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2019.07.001

    Article  Google Scholar 

  11. R. Viswanatha, B. Kishore, U. Bharath, N. Munichandraiah, Communication—electrochemical investigation of plate-like Na2/3Fe1/2Mn1/2O2 for sodium ion cathode. J. Electrochem. Soc. 165, A263–A265 (2018). https://doi.org/10.1149/2.0911802jes

    Article  CAS  Google Scholar 

  12. Y. Sui, Y. Hao, X. Zhang, S. Zhong, J. Chen, J. Li, L. Wu, Spray-drying synthesis of P2-Na2/3Fe1/2Mn1/2O2 with improved electrochemical properties. Adv. Powder Technol. 31, 190–197 (2020). https://doi.org/10.1016/j.apt.2019.10.010

    Article  CAS  Google Scholar 

  13. E. Altin, S. Altundag, S. Altin, A. Bayri, Fabrication of Cr doped Na0.67Fe0.5Mn0.5O2 compounds and investigation of their structural, electrical, magnetic and electrochemical properties. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02136-9

    Article  Google Scholar 

  14. J. Chen, S. Zhong, X. Zhang, J. Liu, S. Shi, Y. Hu, L. Wu, High performance of hexagonal plates P2- Na2/3Fe1/2Mn1/2O2 cathode material synthesized by an improved solid-state method. Mater. Lett. (2017). https://doi.org/10.1016/j.matlet.2017.05.084

    Article  Google Scholar 

  15. Y. Bai, L. Zhao, C. Wu, H. Li, Y. Li, F. Wu, Enhanced sodium ion storage behavior of P2-Type Na2/3Fe1/2Mn1/2O2 synthesized via a chelating agent assisted route. ACS Appl. Mater. Interfaces. 8, 2857–2865 (2016). https://doi.org/10.1021/acsami.5b11848

    Article  CAS  Google Scholar 

  16. C. Ding, T. Nohira, R. Hagiwara, Charge-discharge performance of Na2/3Fe1/2Mn1/2O2 positive electrode in an ionic liquid electrolyte at 90 °C for sodium secondary batteries. Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2017.02.069

    Article  Google Scholar 

  17. I. Moeez, H.G. Jung, H.D. Lim, K.Y. Chung, Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries. ACS Appl. Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.9b14381

    Article  Google Scholar 

  18. H. Wang, R. Gao, Z. Li, L. Sun, Z. Hu, X. Liu, Different effects of Al substitution for Mn or Fe on the structure and electrochemical properties of Na0.67Mn0.5Fe0.5O2 as a sodium ion battery cathode material. Inorg. Chem. (2018). https://doi.org/10.1021/acs.inorgchem.8b00284

    Article  Google Scholar 

  19. E. Marelli, C. Villevieille, S. Park, N. Hérault, C. Marino, Co-Free P2-Na0.67Mn0.6Fe0.25Al0.15O2 as promising cathode material for sodium-ion batteries. ACS Appl. Energy Mater. 1, 5960–5967 (2018). https://doi.org/10.1021/acsaem.8b01015

    Article  CAS  Google Scholar 

  20. W. Kong, H. Wang, L. Sun, C. Su, X. Liu, Understanding the synergic roles of MgO coating on the cycling and rate performance of Na0.67Mn0.5Fe0.5O2 cathode. Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.143814

    Article  Google Scholar 

  21. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. (2001). https://doi.org/10.1107/S0021889801002242

    Article  Google Scholar 

  22. B.H. Toby, R.B. Von Dreele, The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013). https://doi.org/10.1107/S0021889813003531

    Article  CAS  Google Scholar 

  23. K. Kubota, S. Komaba, Review—practical issues and future perspective for Na-Ion batteries. J. Electrochem. Soc. (2015). https://doi.org/10.1149/2.0151514jes

    Article  Google Scholar 

  24. H. Su, S. Jaffer, H. Yu, Transition metal oxides for sodium-ion batteries. Energy Storage Mater. (2016). https://doi.org/10.1016/j.ensm.2016.06.005

    Article  Google Scholar 

  25. R. Zhang, Y. Cui, W. Fan, G. He, X. Liu, Ambient stable Na0.76Mn0.48Ti0.44O2 as anode for Na-ion battery. Electrochim. Acta (2019). https://doi.org/10.1016/j.electacta.2018.10.126

    Article  Google Scholar 

  26. M. Augustin, D. Fenske, I. Bardenhagen, A. Westphal, M. Knipper, T. Plaggenborg, J. Kolny-Olesiak, J. Parisi, Manganese oxide phases and morphologies: a study on calcination temperature and atmospheric dependence. Beilstein J. Nanotechnol. (2015). https://doi.org/10.3762/bjnano.6.6

    Article  Google Scholar 

  27. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  28. M.A.C. Nascimento, The nature of the chemical bond. J. Braz. Chem. Soc. (2008). https://doi.org/10.1590/S0103-50532008000200007

    Article  Google Scholar 

  29. L.H. Ahrens, The use of ionization potentials Part 1. Ionic radii of the elements. Geochim. Cosmochim. Acta (1952). https://doi.org/10.1016/0016-7037(52)90004-5

    Article  Google Scholar 

  30. F. Ahangaran, A. Hassanzadeh, S. Nouri, Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent. Int. Nano Lett (2013). https://doi.org/10.1186/2228-5326-3-23

    Article  Google Scholar 

  31. M. Dimitrakopoulou, X. Huang, J. Kröhnert, D. Teschner, S. Praetz, C. Schlesiger, W. Malzer, C. Janke, E. Schwab, F. Rosowski, H. Kaiser, S. Schunk, R. Schlögl, A. Trunschke, Insights into structure and dynamics of (Mn, Fe)O: X-promoted Rh nanoparticles. Faraday Discuss. (2018). https://doi.org/10.1039/c7fd00215g

    Article  Google Scholar 

  32. J. Liang, D. Wei, Q. Cheng, Y. Zhu, X. Li, L. Fan, J. Zhang, Y. Qian, Cycling of Fe2O3 nanorice as an anode throughelectrochemical porousness and the solid–electrolyteinterphase thermolysis approach. ChemPlusChem 79, 143–150143 (2014)

    Article  CAS  Google Scholar 

  33. L. Ren, H. Qiu, W. Qin, M. Zhang, Y. Li, P. Wei, Inhibition mechanism of Ca2+, Mg2+ and Fe3+ in finecassiterite flotation usingoctanohydroxamic acid. R. Soc. open sci 5, 180158 (2018)

    Article  Google Scholar 

  34. A. Yuan, X. Wang, Y. Wang, J. Hu, Textural and capacitive characteristics of MnO2 nanocrystals derivedfrom a novel solid-reaction route. Electrochim. Acta 54, 1021–1026 (2009)

    Article  CAS  Google Scholar 

  35. V.T. Le, T.M. Pham, V.D. Doan, O.E. Lebedeva, H.T. Nguyen, Removal of Pb (ii) ions from aqueous solution using a novel composite adsorbent of Fe3O4/PVA/spent coffee grounds. Sep. Sci. Technol. 54(18), 3070–3081 (2019)

    Article  CAS  Google Scholar 

  36. V.G.P. Ribeiro, A.C.H. Barreto, J.C. Denardin, G. Mele, L. Carbone, S.E. Mazzetto, E.M.B. Sousa, P.B.A. Fechine, Magnetic nanoparticles coated with anacardic acid derived from cashew nut shell liquid. J. Mater. Sci. 48, 7875–7882 (2013)

    Article  CAS  Google Scholar 

  37. C.M. Julien, M. Massot, Vibrational Spectroscopy Of Electrode Materials For Rechargeable Lithium Batteries Iii. Oxide Frameworks. In: Proceedings of the International Workshop “Advanced Techniques for Energy Sources Investigation and Testing” 4–9 Sept. (2004), Sofia, Bulgaria

  38. C. Liu, K. Shih, Y. Gao, F. Li, L. Wei, Dechlorinating transformation of propachlor through nucleophilic substitution by dithionite on the surface of alumina. J. Soils Sediments (2012). https://doi.org/10.1007/s11368-012-0506-0

    Article  Google Scholar 

  39. M.D. Abràmoff, P.J. Magalhães, S.J. Ram, Image processing with imageJ. Biophotonics Int (2004). https://doi.org/10.1201/9781420005615.ax4

    Article  Google Scholar 

  40. T.J. Collins, ImageJ for microscopy, Biotechniques. (2007). https://doi.org/10.2144/000112517

  41. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. (2012). https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  42. E. Talaie, V. Duffort, H.L. Smith, B. Fultz, L.F. Nazar, Structure of the high voltage phase of layered P2-Na2/3-z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy Environ. Sci. (2015). https://doi.org/10.1039/c5ee01365h

    Article  Google Scholar 

  43. R. Zhan, L. Hu, H. Han, C. Dai, J. Jiang, M. Xu, Exploration of Mn0.5Ti2(PO4)3@rgo composite as anode electrode for Na-ion battery. J. Mater. Sci. Mater. Elect. 29, 4250–4255 (2018). https://doi.org/10.1007/s10854-017-8370-8

    Article  CAS  Google Scholar 

  44. C. Wang, Y. Yang, Z. Chen, C. He, J. Su, Y. Wen, A mild process for the synthesis of Na2Ti3O7 as an anode material for sodium-ion batteries in deep eutectic solvent. J. Mater. Sci. Mater. Elect. 30, 8422–8427 (2019). https://doi.org/10.1007/s10854-019-01159-6

    Article  CAS  Google Scholar 

  45. J.-H. Hong, M.-Y. Wang, Y.Y. Du, L. Deng, G. He, The role of Zn substitution in P2-type Na0.67Ni0.23Zn0.1Mn0.67O2 cathode for inhibiting the phase transition at high potential and dissolution of manganese at low potential. J. Mater. Sci. Mater. Elect. 30, 4006–4013 (2019). https://doi.org/10.1007/s10854-019-00687-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank TUBITAK for financial support by the contract number of 119M169. Prof. S. Altin would like to thank SESAME for XAFS experiments for granting beamtime to the proposal with project number of 20185036. We also want to thank EU CALIPSO programme for travelling and accommodation support during the SESAME experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Altin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altin, S., Altundağ, S., Altin, E. et al. An investigation of the improvement in energy storage performance of Na2/3Mn1/2Fe1/2O2 by systematic Al-substitution. J Mater Sci: Mater Electron 31, 14784–14794 (2020). https://doi.org/10.1007/s10854-020-04042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04042-x

Navigation