Skip to main content
Log in

High thermal stability of RF dielectric properties of BiVO4 matrix with added ZnO

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a complex impedance spectroscopy study of bismuth vanadate (BiVO4) ceramics with different additions of ZnO (25, 50, and 75 wt %) was performed. BiVO4 (BVO) was synthesized by the reaction method in solid-state and calcined at 500 °C and BVO–ZnO composites were moulded in sintered ceramic pellets at 700 °C. X-ray diffraction (XRD) was used to analyse the crystal structure of BVO and the BVO–ZnO composites; none spurious phase was observed during the synthesis. Analysis by complex impedance spectroscopy (CIS) showed that increasing the concentration of ZnO reveals increased activation energy due to thermo-activated charge transfer for the sample with 25 wt % ZnO. At room temperature, the increase in the ZnO concentration in the BVO matrix maintained a high value for the dielectric constant (ε), in the order of 104 at a frequency of 1 Hz. Average normalized change (ANC) was used to identify the temperature at which the available density of trapped charge states vanishes in each sample. The temperature coefficient of capacitance was positive for BVO and negative for composites. The adjustment through the equivalent circuit presented excellent electrical response for the composites, and identified an association with three resistors, each in parallel a constant phase element, showing the influence of grain and grain boundary on the process of thermo-active conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Hoffart, U. Heider, R.A. Huggins, W. Witschel, R. Jooss, A. Lentz, Ionics 2, 34 (1996)

    CAS  Google Scholar 

  2. F. Gu, G. Chen, X. Kang, X. Li, C. Zhou, C. Yuan, Y. Yang, T. Yang, J. Mater. Sci. 50, 1295 (2015)

    CAS  Google Scholar 

  3. D. Zhou, L.-X. Pang, H. Wang, J. Guo, X. Yao, C.A. Randall, J. Mater. Chem. 21, 18412 (2011)

    CAS  Google Scholar 

  4. M.I.M.T. Abdullah, A. Halim, N.M. Ali, Malays. J. Anal. Sci. 13, 151 (2009)

    Google Scholar 

  5. R.G.M. Oliveira, J.E.V. de Morais, G.S. Batista, M.A.S. Silva, J.C. Goes, A.S.B. Sombra, J. Alloys Compd. 775, 889 (2019)

    CAS  Google Scholar 

  6. R.G.M. Oliveira, R.A. Silva, J.E.V. de Morais, G.S. Batista, M.A.S. Silva, J.C. Goes, H.D. de Andrade, I.S. Queiroz Júnior, C. Singh, A.S.B. Sombra, Composites B 175, 107122 (2019)

    CAS  Google Scholar 

  7. G.H. Chen, F.F. Gu, M. Pan, L.Q. Yao, M. Li, X. Chen, Y. Yang, T. Yang, C.L. Yuan, C.R. Zhou, J. Mater. Sci.: Mater. Electron. 26, 6511 (2015)

    CAS  Google Scholar 

  8. A. Moulson, J. Herbert, Electroceramics, 2nd edn. (Wiley, London, 2003)

    Google Scholar 

  9. M. Mousavi-Kamazani, J. Mater. Sci.: Mater. Electron. 30, 17735 (2019)

    CAS  Google Scholar 

  10. A.W. Sleight, W.J. Linn, Ann. N. Y. Acad. Sci. 272, 22 (1976)

    CAS  Google Scholar 

  11. D. Zhou, C.A. Randall, H. Wang, L.-X. Pang, X. Yao, J. Am. Ceram. Soc. 93, 2147 (2010)

    CAS  Google Scholar 

  12. R.G.M. Oliveira, D.B. Freitas, G.S. Batista, J.E.V. de Morais, V.C. Martins, M.M. Costa, M.A.S. Silva, D.X. Gouvêa, C. Singh, A.S.B. Sombra, J. Mater. Sci.: Mater. Electron. 29, 16248 (2018)

    CAS  Google Scholar 

  13. M. Valant, D. Suvorov, J. Am. Ceram. Soc. 83, 2721 (2004)

    Google Scholar 

  14. J. Yu, A. Kudo, Adv. Funct. Mater. 16, 2163 (2006)

    CAS  Google Scholar 

  15. P. Pookmanee, S. Kojinok, S. Phanichphant, J. Met. Mater. Miner. 22, 49 (2012)

    CAS  Google Scholar 

  16. M. Mousavi-Kamazani, J. Alloys Compd. 823, 153786 (2020)

    CAS  Google Scholar 

  17. D. Zhou, L.-X. Pang, J. Guo, H. Wang, X. Yao, C. Randall, Inorg. Chem. 50, 12733 (2011)

    CAS  Google Scholar 

  18. S. Sarkar, K.K. Chattopadhyay, Physica E 44, 1742 (2012)

    CAS  Google Scholar 

  19. Q. Sun, G. Li, T. Tian, Z. Man, L. Zheng, M. Barré, J. Dittmer, F. Goutenoire, A.H. Kassiba, J. Eur. Ceram. Soc. 40, 349 (2020)

    CAS  Google Scholar 

  20. M.A.S. Silva, R.G.M. Oliveira, A.S.B. Sombra, Ceram. Int. 46, 20446 (2019)

    Google Scholar 

  21. B. Ghosh, A. Dutta, T.P. Sinha, J. Alloys Compd. 554, 80 (2013)

    CAS  Google Scholar 

  22. P. Hollins, Spectrochim. Acta A 44, 853 (1988)

    Google Scholar 

  23. Y. Zhang, T. Tong, W. Kinsman, P. Jiang, G. Yin, S. Li, J. Alloys Compd. 549, 358 (2013)

    CAS  Google Scholar 

  24. R.N. Bhowmik, I. Panneer Muthuselvam, J. Magn. Magn. Mater. 335, 64 (2013)

    CAS  Google Scholar 

  25. H.M. Rietveld, Acta Crystallogr. 22, 151 (1967)

    CAS  Google Scholar 

  26. L. Bleicher, J.M. Sasaki, C.O. Paiva Santos, J. Appl. Crystallogr. 33, 1189 (2000)

    CAS  Google Scholar 

  27. A. El Yacoubi, A. Massit, S. El Moutaoikel, A. Rezzouk, B. Chafik El Idrissi, Am. J. Mater. Sci. Eng. 5, 1 (2017)

    Google Scholar 

  28. R.A. Young, A. Sakthivel, T.S. Moss, C.O. Paiva-Santos, J. Appl. Crystallogr. 28, 366 (1995)

    Google Scholar 

  29. C. Pascoal, R. Machado, V.C. Pandolfelli, Cerâmica 48, 61 (2002)

    CAS  Google Scholar 

  30. J.P.C. do Nascimento, A.J.M. Sales, D.G. Sousa, M.A.S. da Silva, S.G.C. Moreira, K. Pavani, M.J. Soares, M.P.F. Graça, J. Suresh Kumar, A.S.B. Sombra, RSC Adv. 6, 68160 (2016)

    CAS  Google Scholar 

  31. C. Pascoal, V.C. Pandolfelli, Cerâmica 46, 76 (2000)

    CAS  Google Scholar 

  32. J.R. MacDonald, Appl. Opt. 28, 1083 (1989)

    Google Scholar 

  33. R.G.M. Oliveira, M.C. Romeu, M.M. Costa, P.M. Silva, J.M.S. Filho, C.C.M. Junqueira, A.S.B. Sombra, J. Alloys Compd. 584, 295 (2014)

    CAS  Google Scholar 

  34. R.G.M. Oliveira, J.W.O. Bezerra, J.E.V. de Morais, M.A.S. Silva, J.C. Goes, M.M. Costa, A.S.B. Sombra, Mater. Lett. 205, 67 (2017)

    CAS  Google Scholar 

  35. K. Lily Kumari, K. Prasad, R.N.P. Choudhary, J. Alloys Compd. 453, 325 (2008)

    Google Scholar 

  36. I.I. Popov, R.R. Nigmatullin, A.A. Khamzin, I.V. Lounev, J. Phys: Conf. Ser. 394, 012026 (2012)

    Google Scholar 

  37. A.K. Jonscher, J. Phys. D 32, R57 (1999)

    CAS  Google Scholar 

  38. A.K. Jonscher, J. Mater. Sci. 13, 553 (1978)

    CAS  Google Scholar 

  39. M. Shah, M. Nadeem, M. Idrees, M. Atif, M.J. Akhtar, J. Magn. Magn. Mater. 332, 61 (2013)

    CAS  Google Scholar 

  40. C. Rayssi, F.I.H. Rhouma, J. Dhahri, K. Khirouni, M. Zaidi, H. Belmabrouk, Appl. Phys. A 123, 778 (2017)

    CAS  Google Scholar 

  41. T. Lu, Solid State Ionics 21, 339 (1986)

    CAS  Google Scholar 

  42. A. Zhang, J. Zhang, N. Cui, X. Tie, Y. An, L. Li, J. Mol. Catal. A 304, 28 (2009)

    CAS  Google Scholar 

  43. M.M. Costa, G.F.M. Pires, A.J. Terezo, M.P.F. Graça, A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011)

    Google Scholar 

  44. M. Ram, Appl. Phys. A 99, 437 (2010)

    CAS  Google Scholar 

  45. Z.-L. Hou, M.-S. Cao, J. Yuan, X.-Y. Fang, X.-L. Shi, J. Appl. Phys. 105, 076103 (2009)

    Google Scholar 

  46. M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, Carbon 48, 788 (2010)

    CAS  Google Scholar 

  47. M.-S. Cao, Z.-L. Hou, J. Yuan, L.-T. Xiong, X.-L. Shi, J. Appl. Phys. 105, 106102 (2009)

    Google Scholar 

  48. R.G.M. Oliveira, G.S. Batista, J.E.V. de Morais, M.M. Costa, M.A.S. Silva, J.W.O. Bezerra, A.S.B. Sombra, J. Mater. Sci.: Mater. Electron. 26, 6511 (2018)

    Google Scholar 

  49. B. Lee, I. Abothu, P. Raj, C. Yoon, R. Tummala, Scr. Mater. 54, 1231 (2006)

    CAS  Google Scholar 

  50. K. Hirota, G. Komatsu, M. Yamashita, H. Takemura, O. Yamaguchi, Mater. Res. Bull. 27, 823 (1992)

    CAS  Google Scholar 

  51. X.-Z. Yuan, C. Song, W. Haijiang, J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells. Fundamentals and Applications (Springer, London, 2010)

    Google Scholar 

  52. J.R. MacDonald, Impedance Spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  53. H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, J. Magn. Magn. Mater. 316, 23 (2007)

    CAS  Google Scholar 

  54. K.S. Cole, J. Chem. Phys. 10, 98 (1942)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CNPq (402045/2013-0), the US Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127), and CNPq (Process: 402561/2007-4, Edict MCT/CNPq nº 10/2007) for providing financial support and to the X-Ray Laboratory of the Federal University of Ceará for XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. B. Sombra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, R.G.M., Souza, D.C., de Morais, J.E.V. et al. High thermal stability of RF dielectric properties of BiVO4 matrix with added ZnO. J Mater Sci: Mater Electron 31, 13078–13087 (2020). https://doi.org/10.1007/s10854-020-03858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03858-x

Navigation