Skip to main content

Advertisement

Log in

Fabrication methods of lead titanate glass ceramics and dielectric characteristics: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead titanate (PbTiO3) glass and glass ceramics (GCs) are technologically very useful materials that played significant role in various applications due to attractive optical and electrical properties. Based on its structural comparability with the perovskite barium titanate (BaTiO3) lattice, PbTiO3 was the first reported ferroelectric material in 1950. High Curie temperature (490 °C) exhibited by PbTiO3 has led to its utilization for high-temperature applications. The high molecular mass of lead also raises the density of the material, considering its mass of 207.2 g/mol, versus 40.08 g/mol for calcium. Thus, lead-based GCs also have an advantageous use to protect from the highly penetrating X-rays, γ-rays radiations, and high energy storage in barrier layer capacitors. Dielectric behavior of the GCs mainly depends on its doping with numerous oxides such as La2O3, Bi2O3, CrO3, Nb2O5, the heat treatment processes, and their respective soaking times. Herein, we report the different methods of the synthesis of PbTiO3 glass and GCs which showed distinct optical, structural, dielectric, and mechanical properties. Moreover, this review emphases on the past and recent dielectric characteristics of the various PbTiO3 glass ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Ceram. Int. 44, 18189–18199 (2018)

    CAS  Google Scholar 

  2. M.E. Lines, Principles and applications of ferroelectrics and related materials (Oxford University Press, Oxford, 1979)

    Google Scholar 

  3. J.M. Herbert, Ceramic dielectrics and capacitors (Gordon and Breach, New York, 1985)

    Google Scholar 

  4. A.J. Moulson, J.M. Herbert, Electroceramics, materials-properties-applications (Chapman and Hall, London, 1996)

    Google Scholar 

  5. S.Z.F. Li, X. Jiang, J. Kim, J. Luo, X. Geng, Prog. Mater. Sci. 68, 1–66 (2015)

    CAS  Google Scholar 

  6. S. Ramesh, D. Ravinder, K.C.B. Naidu, N.S. Kumar, K. Srinivas, D.B. Basha, B.C. Sekhar, Biointer. Res. App. Chem. 9, 4205–4216 (2019)

    CAS  Google Scholar 

  7. S.E. Park, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 44, 1140–1147 (1997)

    Google Scholar 

  8. S.J. Zhang, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 57, 2138–2146 (2010)

    Google Scholar 

  9. S.W. Lee, K.B. Shim, Mater. Lett. 38, 356–359 (1999)

    CAS  Google Scholar 

  10. J.B. Blum, S.R. Gurkovich, J. Mater. Sci. 20, 4479–4483 (1985)

    CAS  Google Scholar 

  11. N.J. Phillips, M.L. Calzada, S.J. Milne, J. Non-Cryst, Solids 147, 285–290 (1992)

    Google Scholar 

  12. P.L. Zhang, W.L. Zhong, S.L. Wang, Y.G. Wang, Z.Y. Ding, Integr. Ferroelectr. 4, 45–51 (1994)

    CAS  Google Scholar 

  13. T. Zhu, G. Han, G. Zhao, Z. Ding, H. Zhengfu, J. Mater. Sci. Technol. 13, 306–308 (1997)

    CAS  Google Scholar 

  14. Z. Jiwei, Y. Xi, Z. Liangying, J. Electroceram. 5, 211–216 (2000)

    Google Scholar 

  15. J.J. Shyu, Y.S. Yang, J. Mater. Sci. 31, 4859–4863 (1996)

    CAS  Google Scholar 

  16. C.G. Bergeron, Crystallization of perovskite lead titanate from glass, Ph.D. Thesis, University of Illinois, IL, USA (1961)

  17. A. Herczog, J. Am. Ceram. Soc. 67, 484–490 (1984)

    CAS  Google Scholar 

  18. T. Kokubo, M. Tashiro, J. Non-Cryst, Solids 13, 328–340 (1974)

    CAS  Google Scholar 

  19. R.K. Mandal, C.D. Prasad, O. Parkash, D. Kumar, Bull. Mater. Sci. 9, 255–262 (1987)

    Google Scholar 

  20. G. Shirane, S. Hoshino, J. Phys. Soc. Jpn. 6, 265–270 (1951)

    CAS  Google Scholar 

  21. S. Ikegami, I. Ueda, J. Phys. Soc. Jpn. 22, 725–734 (1967)

    CAS  Google Scholar 

  22. K. Ljima, R. Takayama, Y. Tomita, I. Ueda, J. Appl. Phys. 60, 2914–2919 (1986)

    Google Scholar 

  23. M.M. El-Desoky, A.E. Harby, A.E. Hannora, M.S. Al-Assiri, J. Clust. Sci. 28, 2147–2156 (2017)

    CAS  Google Scholar 

  24. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press Inc., London, 1971)

    Google Scholar 

  25. S. Ikegami, I. Ueda, T. Nagata, J. Acoust. Soc. Am. 50, 1060–1066 (1971)

    CAS  Google Scholar 

  26. T. Takahashi, Am. Ceram. Soc. Bull. 69, 691–695 (1990)

    CAS  Google Scholar 

  27. G.H. Heartling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Google Scholar 

  28. B. Jiang, J.L. Peng, L.A. Bursill, W.L. Zhong, J. Appl. Phys. 87, 3462–3467 (2000)

    CAS  Google Scholar 

  29. M. Okayasu, T. Ogawa, Y. Sasaki, Ceram. Int. 43, 16306–16312 (2017)

    CAS  Google Scholar 

  30. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Cryst. Res. Technol. 1800139, 1–7 (2018)

    Google Scholar 

  31. N. Kumari, S. Monga, M. Arif, N. Sharma, A. Singh, V. Gupta, P.M. Vilarinho, K. Sreenivas, R.S. Katiyar, Ceram. Int. 45, 4398–4407 (2019)

    CAS  Google Scholar 

  32. H. Xin, Q. Pang, D. Gao, L. Li, W. Chen, A. Zhang, Phys. Lett. A 384, 126279 (2020)

    CAS  Google Scholar 

  33. T. Kokubo, K. Yamashita, M. Tashiro, Bull. Inst. Chem. Res. Kyoto Univ. 50, 608–620 (1972)

    CAS  Google Scholar 

  34. T. Kokubo, I. Setsuro, M. Tashiro, Bull. Inst. Chem. Res. Kyoto Univ. 51, 315–328 (1973)

    CAS  Google Scholar 

  35. T. Singh, A. Kumar, U.C. Naithani, Ind. J. Pure Appl. Phys. 48, 47–51 (2010)

    CAS  Google Scholar 

  36. C.R. Gautam, A.K. Yadav, D. Kumar, O. Parkash, Lucknow J. Sci. 8, 425–436 (2011)

    Google Scholar 

  37. C.R. Gautam, D. Kumar, O. Parkash, O.P. Thakur, J. Ceram. 2013, 1–9 (2013)

    Google Scholar 

  38. A. Madheshiya, C.R. Gautam, S. Upadhyay, J. Non-Cryst. Solids 502, 118–127 (2018)

    CAS  Google Scholar 

  39. S. Das, A. Madheshiya, S.S. Gautam, C.R. Gautam, D. Tripathy, J. Mater. Sci.: Mater. Electr. 30, 2431–2441 (2019)

    CAS  Google Scholar 

  40. A. Madheshiya, C.R. Gautam, K. Srivastava, Mater. Res. Exp. 7(015206), 1–17 (2020)

    Google Scholar 

  41. A. Herczog, S.D. Stookey, Application of glass-ceramics for electronic components and circuits, US Pat. No. 30, 413 (1960)

  42. C.G. Bergeron, C.K. Russell, J. Am. Ceram. Soc. 48, 115–118 (1965)

    CAS  Google Scholar 

  43. D.G. Grossman, J.O. Isard, J. Am. Ceram. Soc. 52, 230–231 (1969)

    CAS  Google Scholar 

  44. D.G. Grossman, J.O. Isard, J. Mater. Sci. 4, 1059–1063 (1969)

    CAS  Google Scholar 

  45. S.M. Lynch, J.E. Shelby, J. Am. Ceram. Soc. 67, 424–427 (1984)

    CAS  Google Scholar 

  46. W.U. Mianxue, Z. Peinan, J. Non-Crst, Solids 84, 344–351 (1986)

    Google Scholar 

  47. J.J. Shyu, Y.S. Yang, J. Am. Ceram. Soc. 78, 1463–1468 (1995)

    CAS  Google Scholar 

  48. K. Saegusa, J. Am. Ceram. Soc. 79, 3282–3288 (1996)

    CAS  Google Scholar 

  49. A. Bahrami, Z.A. Nemati, P. Alizadeh, M. Bolandi, J. Mater. Proc. Technol. 206, 126–131 (2008)

    CAS  Google Scholar 

  50. S. Golezardi, V.K. Marghussian, A. Beitollahi, S.M. Mirkazemi, J. Eur. Ceram. Soc. 30, 1453–1460 (2010)

    CAS  Google Scholar 

  51. F.W. Martin, Phys. Chem. Glasses 6, 143–146 (1965)

    CAS  Google Scholar 

  52. C.R. Gautam, D. Kumar, O. Parkash, Bull. Mater. Sci. 34, 1393–1399 (2011)

    CAS  Google Scholar 

  53. C.R. Gautam, D. Kumar, P. Singh, O. Parkash, ISRN Spectrosc. 2012, 1–11 (2012)

    Google Scholar 

  54. H. Li, J. Zhu, Q. Wu, J. Zhuang, H. Guo, Z. Ma, Y. Ye, Ceram. Int. 43, 13063–13068 (2017)

    CAS  Google Scholar 

  55. N. Sareecha, W.A. Shah, M.L. Mirza, A.S. Saleemi, S.A. Tirmizi, M.S. Awan, Mater. Chem. Phys. 214, 8–16 (2018)

    CAS  Google Scholar 

  56. F. Craciun, F. Cordero, M. Cernea, V. Fruth, I. Atkinson, N. Stanica, B.S. Vasile, R. Trusca, A. Iuga, P. Galizia, C. Galassi, Ceram. Int. 45, 9390–9396 (2019)

    CAS  Google Scholar 

  57. J. Li, J. Lin, F. Li, Y. Zhang, G. Zhao, J. Zhai, S. Li, Ceram. Int. 46, 8391–8397 (2020)

    CAS  Google Scholar 

  58. J. Sheng, L.D. Wang, D. Li, W.P. Cao, Y. Feng, M. Wang, Z.Y. Yang, Y. Zhao, W.D. Fei, Mater. Des. 132, 442–447 (2017)

    CAS  Google Scholar 

  59. B. Kaeswurm, F.H. Schader, K.G. Webber, Ceram. Int. 44, 2358–2363 (2018)

    CAS  Google Scholar 

  60. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Int. J. App. Ceram. Technol. 16, 130–137 (2019)

    Google Scholar 

  61. Z. Ning, Y. Jiang, J. Jian, J. Guo, J. Cheng, H. Cheng, J. Chen, J. Eur. Ceram. Soc. 40, 2338–2344 (2020)

    CAS  Google Scholar 

  62. R.A.P. Ribeiro, S.R. Lazaro, Quim. Nova 37, 1165–1170 (2014)

    CAS  Google Scholar 

  63. J. Zhu, J. Zhang, H. Xu, S.C. Vogel, C. Jin, J. Frantti, Y. Zhao, Sci. Rep. 4(3700), 1–6 (2014)

    Google Scholar 

  64. J.M. Xue, D.M. Wan, J. Wang, Solid State Ionics 151, 403–412 (2002)

    CAS  Google Scholar 

  65. D. Kumar, C.R. Gautam, O. Parkash, Appl. Phys. Lett. 89, 112908–112911 (2006)

    Google Scholar 

  66. C.R. Gautam, D. Kumar, O. Parkash, Adv. Mater. Sci. Eng. 2011, 1–9 (2011)

    Google Scholar 

  67. C.R. Gautam, D. Kumar, O. Parkash, Glass Phys. Chem. 39, 162–173 (2013)

    CAS  Google Scholar 

  68. C.R. Gautam, A. Madheshiya, R. Mazumder, J. Adv. Ceram. 3, 194–206 (2014)

    CAS  Google Scholar 

  69. C.R. Gautam, A. Madheshiya, R.K. Dwivedi, Indian J. Mater. Sci. 2015, 1–10 (2015)

    Google Scholar 

  70. A. Madheshiya, C.R. Gautam, S. Kumar, J. Asian Ceram. Soc. 5, 276–283 (2017)

    Google Scholar 

  71. S. Das, S.S. Gautam, C.R. Gautam, A. Madheshiya, U.S. Dixit, Ceram. Int. 44, 6541–6550 (2018)

    CAS  Google Scholar 

  72. S. Das, A. Madheshiya, M. Ghosh, K.K. Dey, S.S. Gautam, J. Singh, R. Mishra, C.R. Gautam, J. Phys. Chem. Solids 126, 17–26 (2019)

    CAS  Google Scholar 

  73. A. Madheshiya, K.K. Dey, M. Ghosh, J. Singh, C.R. Gautam, J. Non-Crst, Sol. 503–504, 288–296 (2019)

    Google Scholar 

  74. C.R. Gautam, A. Madheshiya, A.K. Singh, K.K. Dey, M. Ghosh, Res. Phys. 16, 102914 (2020)

    Google Scholar 

  75. A. Madheshiya, Ph.D. Thesis, University of Lucknow, India (2018)

  76. A.K. Yadav, C.R. Gautam, Adv. Appl. Ceram. 113, 193–207 (2014)

    Google Scholar 

  77. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Mater. Sci. Eng. B 242, 23–30 (2019)

    CAS  Google Scholar 

  78. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, S. Ramesh, K. Srinivas, D.B. Basha, Adv. Nat. Sci.: Nanosci. Nanotechnol. 10, 035014:1–6 (2019)

  79. S.J. Kuzmanovic, Ph.D. Thesis, Twente University (1995)

  80. V.T. Kajinebaf, H. Sarpoolaky, T. Mohammadi, Iran. J. Mater. Sci. Engg. 10, 28–38 (2013)

    Google Scholar 

  81. T. Tsuru, J. sol–gel Sci. Technol. 46, 349–361 (2008)

  82. A.K. Yadav, P. Singh, RSC Adv. 5, 67583–67609 (2015)

    CAS  Google Scholar 

  83. J.B. Blum, Proceedings of 34th Electronic Components Conference, IEEE, New York, 407–410 (1984)

  84. J. Wang, G. Jiang, W. Huang, D. Liu, B. Yang, W. Cao, J. Alloys Compd. 739, 700–704 (2018)

    CAS  Google Scholar 

  85. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Mater. Chem. Phys. 223, 241–248 (2019)

    Google Scholar 

  86. C.J. Brinker, D.E. Clark, D.R. Ulrich, Better ceramics through chemistry (North-Holland, New York, 1984)

    Google Scholar 

  87. L.L. Hench, D.R. Ulrich, Ultra structure processing of ceramics, glasses and composites (Wiley-Inter. Science, New York, 1984)

    Google Scholar 

  88. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, G.R. Kumar, S. Ramesh, Ceram. Int. 44, 19408–19420 (2018)

    CAS  Google Scholar 

  89. S.R. Gurkovich, J.B. Blum, Ferroelectrics 62, 189–194 (1985)

    CAS  Google Scholar 

  90. P. Muralt, J. Appl. Phys. 100, 051605–051616 (2006)

    Google Scholar 

  91. Y. Wang, J. Yan, H. Cheng, N. Chen, P. Yan, F. Yang, J. Ouyang, Ceram. Int. 45, 9032–9037 (2019)

    CAS  Google Scholar 

  92. M. Zhu, H. Zhang, Z. Du, C. Liu, Ceram. Int. 45, 22324–22330 (2019)

    CAS  Google Scholar 

  93. M.A. Khan, T.P. Comyn, A.J. Bell, J. Eur. Ceram. Soc. 28, 591–597 (2008)

    CAS  Google Scholar 

  94. J.R. Cano, A.H. Macias, W.A. Flores, L.F. Cobas, J.G. Hernandez, P.A. Madrid, M.M. Yoshida, Thin Solid Films 531, 179–184 (2013)

    Google Scholar 

  95. S. Kim, S. Baik, Thin Solid Films 266, 205–211 (1995)

    CAS  Google Scholar 

  96. B. Sorli, J. Podlecki, P. Combette, R. Arinero, F.P. Delannoy, A. Giani, J. Cryst. Growth 304, 383–387 (2007)

    CAS  Google Scholar 

  97. A. Iljinas, L. Marcinauskas, V. Stankus, Appl. Surface Sci. 381, 6–11 (2016)

    CAS  Google Scholar 

  98. J.L. Lin, Z.J. Wang, X. Zhao, W. Liu, Z.D. Zhang, Ceram. Int. 44, 20664–20670 (2018)

    CAS  Google Scholar 

  99. B. Jaber, D. Remiens, E. Cattan, P. Tronc, B. Thierry, Sens. Actuators A: Phys. 63, 91–96 (1997)

    CAS  Google Scholar 

  100. S. Kim, S. Baik, J. Am. Ceram. Sot. 77, 230–234 (1994)

    CAS  Google Scholar 

  101. S. Kim, S. Baik, J. Vat. Sci. Technol. A 13, 95–100 (1995)

    CAS  Google Scholar 

  102. H. Zhao, W. Ren, X. Liu, Ceram. Int. 43, S464–S469 (2017)

    CAS  Google Scholar 

  103. A.K. Yadav, C.R. Gautam, J. Mater. Sci: Mater. Electron. 25, 5165–5187 (2014)

    CAS  Google Scholar 

  104. R. Blinc, Ferroelectr. Antiferroelectr. Struct. Bonding 124, 51–67 (2007)

    CAS  Google Scholar 

  105. A.E. Harby, A.E. Hannora, M.M. El-Desoky, J. Alloys Compd. 770, 906–913 (2019)

    CAS  Google Scholar 

  106. M.S. Al-Assiri, M.M. El-Desoky, A. Al-Hajry, A. Al-Shahrani, A.M. Al-Mogeeth, A.A. Bahgat, Phys. B 404, 1437–1445 (2009)

    CAS  Google Scholar 

  107. M.S. Al-Assiri, M.M. El-Desoky, J. Non-Cryst, Solids 358, 1605–1610 (2012)

    CAS  Google Scholar 

  108. P.P. Neves, A.C. Doriguetto, V.R. Mastelaro, L.P. Lopes, Y.P. Mascarenhas, A. Michalowicz, J.A. Eiras, J. Phys. Chem. B 108, 14840–14849 (2004)

    CAS  Google Scholar 

  109. E.C.S. Tavares, P.S. Pizani, J.A. Eiras, Appl. Phys. Lett. 72, 897–899 (1998)

    CAS  Google Scholar 

  110. M. Maanan, Y. Guaaybess, R. Adhiri, M. Moussetad, S. Sayouri, A. Elmesbahi, Adv. Phys. Theor. Appl. 31, 7–15 (2014)

    Google Scholar 

  111. Y. Guaaybess, M. Moussetad, A. Elmesbahi, S. Sayouri, M. Maanan, R. Adhiri, L. Hajji, O. Azaroual, Phys. Chem. News 53, 34–38 (2010)

    CAS  Google Scholar 

  112. A.Q. Jiang, G.H. Li, L.D. Zhang, J. Appl. Phys. 83, 4878–4882 (1998)

    CAS  Google Scholar 

  113. Y. Guaaybess, M. Maanan, R. Adhiri, M. Moussetad, A.E. Mesbahi, S. Sayouri, L. Zarhouni, MATEC Web Conf. 5(4036), 1–4 (2013)

    Google Scholar 

  114. C.R. Gautam, A. Madheshiya, P. Sharma, R.K. Dwivedi, Inter. J. App. Ceram. Technol. 13, 340–351 (2016)

    CAS  Google Scholar 

  115. A.N. Rybyanets, M.A. Lugovaya, G.M. Konstantinov, N.A. Shvetsova, D.I. Makarev, Bull. Russian Academy Sci.: Phys. 82,246–250 (2018)

  116. H.A. Mady, Aust. J. Basic Aplp. Sci. 5, 1472–1477 (2011)

    CAS  Google Scholar 

  117. E.E. Saisha, S.F. Desouki, I. Shaltout, A.A. Bahgat, J. Mater. Sci. Technol. 22, 701–707 (2006)

    Google Scholar 

  118. P.P. Bardapurkar, S.S. Shewale, S.A. Arote, N.P. Barde, Ukrainian. J. Phys. 63, 552–556 (2018)

    Google Scholar 

  119. G.S. Murugan, G.N. Subbanna, K.B.R. Varma, J. Mater. Sci. Lett. 18, 1687–1690 (1999)

    CAS  Google Scholar 

  120. P. Sooksaen, I.M. Reaney, D.C. Sinclair, J. Mater. Res. 20, 1316–1323 (2005)

    CAS  Google Scholar 

  121. P. Sooksaen, I.M. Reaney, D.C. Sinclair, J. Electroceram. 19, 221–228 (2007)

    CAS  Google Scholar 

  122. D. McCauley, R.E. Newnham, C.A. Randall, J. Am. Ceram. Soc. 81, 979–987 (1998)

    CAS  Google Scholar 

  123. J. Shankar, V.K. Deshpande, Integr. Ferroelectr. 119, 110–121 (2010)

    CAS  Google Scholar 

  124. L.E. Cross, Bull. Am. Ceram. Soc. 63, 586–590 (1984)

    CAS  Google Scholar 

  125. K. Sasazawa, K. Oshima, N. Yamaoka, Jpn. J. App. Phys. 26, 65–67 (1987)

    CAS  Google Scholar 

  126. T.R. Shrout, A. Halliyal, Am. Ceram. Soc. Bull. 66, 704–711 (1987)

    CAS  Google Scholar 

  127. D. Damjanovic, T.R. Gururaja, L.E. Cross, Am. Ceram. Soc. Bull. 66, 699–703 (1987)

    CAS  Google Scholar 

  128. M. Kuwabara, J. Am. Ceram. Soc. 73, 1438–1439 (1990)

    CAS  Google Scholar 

  129. R.Y. Ting, Ferroelectrics 67, 143–157 (1978)

    Google Scholar 

  130. Y. Chan, H.L.W. Chan, C.L. Choy, J. Am. Ceram. Soc. 81, 1231–1236 (1998)

    Google Scholar 

  131. H.A. Mady, J. Appl. Sci. Res. 7, 1536–1543 (2011)

    CAS  Google Scholar 

  132. R. Bhattacharya, M. Tech, Dissertation (BHU, Varanasi, India, 1996)

    Google Scholar 

  133. S. Subrahmanyam, E. Goo, Acta Mater. 46, 817–822 (1998)

    CAS  Google Scholar 

  134. S. Subrahmanyam, E. Goo, J. Mater. Sci. 33, 4085–4088 (1998)

    CAS  Google Scholar 

  135. V.R. Mudinepalli, S. Song, B.S. Murty, J. Mater. Sci. Mater. Electron. 24, 2141–2150 (2013)

    CAS  Google Scholar 

  136. A.K. Yadav, C.R. Gautam, J. Mater. Sci.: Mater. Electron. 25, 3532–3536 (2014)

    CAS  Google Scholar 

  137. A.K. Sahu, Ph.D. Thesis, IIT, BHU, India (2002)

  138. A.K. Sahu, D. Kumar, O. Parkash, O.P. Thakur, C. Prakash, Br. Ceram. Trans. 102, 148–152 (2003)

    CAS  Google Scholar 

  139. A.K. Sahu, D. Kumar, O. Parkash, O.P. Thakur, C. Prakash, J. Mater. Sci. 41, 2087–2096 (2006)

    CAS  Google Scholar 

  140. S.Y. Chu, T.Y. Chen, Sens. Actuators A 116, 10–14 (2004)

    CAS  Google Scholar 

  141. W. Liu, C. Mao, G.X. Dong, J. Du, Ceram. Int. 35, 1261–1265 (2009)

    CAS  Google Scholar 

  142. C.R. Gautam, P. Singh, O.P. Thakur, D. Kumar, O. Parkash, J. Mater. Sci. 47, 6652–6664 (2012)

    CAS  Google Scholar 

  143. D.J. Huisman, J.V. Laan, G.R. Davies, B.J.H. Os, N. Roymans, B. Fermin, M. Karwowski, J. Archaeol. Sci. 81, 59–78 (2017)

    CAS  Google Scholar 

  144. T. Kokubo Preparation and properties of glass-ceramics containing ferroelectric crystals, Part II, Chapter-4, 48–72 (1974)

  145. K. Saegusa, W.E. Rhine, H.K. Bowen, J. Am. Ceram. Soc. 76, 1505–1512 (1993)

    CAS  Google Scholar 

  146. K. Saegusa, J. Am. Ceram. Soc. 80, 2510–2516 (1997)

    CAS  Google Scholar 

  147. L.J. DeVore, S.M. Lynch, J.E. Shelby, ISAF Proceedings of the 12th IEEE Int. Symp. Honolulu, HI, USA, IEEE1, 401–404 (2000)

  148. W.K. Tredway, S.H. Risbud, C.G. Bergeron, Am. Ceram. Soc. 4, 163–168 (1982)

    CAS  Google Scholar 

  149. P. Sooksaen, J. Hongart, T. Arsawuth, U. Meesukon, Chiang Mai J. Sci. 35, 427–436 (2008)

    CAS  Google Scholar 

  150. J. Shankar, V.K. Deshpande, Phys. B 406, 588–592 (2011)

    CAS  Google Scholar 

  151. J. Shankar, V.K. Deshpande, Phys. B 407, 2160–2163 (2012)

    CAS  Google Scholar 

  152. J.J. Shyu, C.H. Chen, Ceram. Inter. 29, 447–453 (2003)

    CAS  Google Scholar 

  153. V.K. Deshpande, V.U. Rahangdale, ISRN Ceram. 2012, 1–5 (2012)

    Google Scholar 

  154. J. Ryu, G. Han, T.K. Song, A. Welsh, S.T. McKinstry, H. Choi, J.P. Lee, J.W. Kim, W.H. Yoon, J.J. Choi, D.S. Park, C.W. Ahn, S. Priya, S.Y. Choi, D.Y. Jeong, A.C.S. Appl, Mater. Interfaces 6, 11980–11987 (2014)

    CAS  Google Scholar 

  155. J. Ryu, J.J. Choi, B.D. Hahn, D.S. Park, W.H. Yoon, K.H. Kim, Appl. Phys. Lett. 90(152901), 1–3 (2007)

    Google Scholar 

  156. J. Akedo, J. Therm. Spray Technol. 17, 181–198 (2008)

    CAS  Google Scholar 

  157. J. Ryu, D.S. Park, B.D. Hahn, J.J. Choi, W.H. Yoon, K.Y. Kim, H.S. Yun, Appl. Catal. B Environ. 83, 1–7 (2008)

    CAS  Google Scholar 

  158. G. Han, J. Ryu, W.H. Yoon, J.J. Choi, B.D. Hahn, J.W. Kim, D.S. Park, C.W. Ahn, S. Priya, D.Y. Jeong, J. Appl. Phys. 110(124101), 1–5 (2011)

    Google Scholar 

  159. S.Y. Lee, S.W. Ko, S. Lee, S.T. McKinstry, Appl. Phys. Lett. 100(212905), 1–3 (2012)

    Google Scholar 

  160. R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Appl. Acoust. 41, 299–324 (1994)

    Google Scholar 

  161. T.R. Taylor, P.J. Hansen, B. Acikel, N. Pervez, R.A. York, S.K. Streiffer, J.S. Speck, Appl. Phys. Lett. 80, 1978–1980 (2002)

    CAS  Google Scholar 

  162. V.A. Chaudhari, G.K. Bichile, Smart. Smart Mater. Res. 2013, 1–9 (2013)

    Google Scholar 

  163. L.E. Cross, Mater. Chem. Phys. 43, 108–115 (1996)

    CAS  Google Scholar 

  164. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    CAS  Google Scholar 

  165. R. Yimnirun, S. Ananta, P. Laoratanakul, Mater. Sci. Eng. B 112, 79–86 (2004)

    Google Scholar 

  166. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. A 25, 925–946 (1969)

    CAS  Google Scholar 

  167. A. Halliyal, U. Kumar, R.E. Newnham, L.E. Cross, Am. Ceram. Soc. Bull. 66, 671–676 (1987)

    CAS  Google Scholar 

  168. Z. Li, A. Wu, P.M. Vilarinho, Chem. Mater. 16, 717–723 (2004)

    CAS  Google Scholar 

  169. A. Wu, I.M. Salvado, P.M. Vilarinho, J.L. Baptista, J. Eur. Ceram. Soc. 17, 1443–1452 (1997)

    CAS  Google Scholar 

  170. A. Luker, Q. Zhang, P.B. Kirby, Ferroelectr. Mater Aspects 9, 181–192 (2011)

    Google Scholar 

  171. X.T. Li, W.L. Huo, C.L. Mak, S. Sui, W.J. Weng, G.R. Han, G. Shen, P.Y. Du, Mater. Chem. Phys. 108, 417–420 (2008)

    CAS  Google Scholar 

  172. J. Yang, X.J. Meng, M.R. Shen, L. Fang, J.L. Wang, T. Lin, J.L. Sun, J.H. Chu, J. Appl. Phys. 104(104113), 1–5 (2008)

    Google Scholar 

  173. Z.H. Zhou, J.M. Xue, W.Z. Li, J. Wang, H. Zhu, J.M. Miao, J. Phys. D: Appl. Phys. 38, 642–648 (2005)

    CAS  Google Scholar 

  174. N.S. Almodovar, J. Portelles, O. Raymond, J. Heiras, J.M. Siqueirosa, J. Appl. Phys. 102(124105), 1–7 (2007)

    Google Scholar 

  175. A. Garg, D.C. Agrawal, J. Mater. Sci. Mater. Electron. 10, 649–652 (1999)

    CAS  Google Scholar 

  176. D.H. Kang, J.H. Kim, J.H. Park, K.H. Yoon, Mater. Res. Bull. 36, 265–276 (2001)

    CAS  Google Scholar 

  177. D.A. Barrow, T.E. Petroff, R.P. Tandon, M. Sayer, J. Appl. Phys. 81, 876–881 (1997)

    CAS  Google Scholar 

  178. E. Yamaka, H. Watanabe, H. Kimura, H. Kanaya, H. Ohkuma, J. Vac. Sci. Technol. A 6, 2921–2928 (1988)

    CAS  Google Scholar 

  179. S. Chewasatn, S.J. Milne, N. Pankurddee, L. Chotimongkol, B.M. Kulwicki, A. Amin, A. Safari, Proceedings of 10th IEEE International Symposium on Applications of Ferroelectrics, East Brunswick, NJ, 597–600 (1996)

  180. C.M. Wang, Y.C. Chen, M.S. Lee, J.W. Wu, C.C. Chiou, Jpn. J. Appl. Phys. 37, 951–957 (1998)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledged all publishers for cited contributions of generous consent to highlight their previous work for academic purposes. One of the authors A.M. is also highly acknowledged and thankful to the Council of Scientific & Industrial Research (CSIR), New Delhi (India), for providing the financial aid underneath Senior Research Fellowship (SRF) no. 09/107(0380)/2016-EMR-I (Ack. No. 124250/2K15/1-EMR-I). C.R.G. also admiringly recognized the SERB-DST, New Delhi, for sanctioning the financial help (File No. EEQ/2018/000647) to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandkiram Gautam.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial profits or personal relationships that could have appeared to effect the work described in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, C., Madheshiya, A. Fabrication methods of lead titanate glass ceramics and dielectric characteristics: a review. J Mater Sci: Mater Electron 31, 12004–12025 (2020). https://doi.org/10.1007/s10854-020-03831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03831-8

Navigation