Skip to main content

Advertisement

Log in

Synthesis and characterization of CuO–NiO nanocomposite: highly active electrocatalyst for oxygen evolution reaction application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Design and development of highly active low-cost electrocatalyst for electrochemical water splitting is a current emergency for reducing energy demand in the future. In this study, we found a cost effective CuO–NiO nanocomposite which is prepared by a simple one-step chemical precipitation method. The crystalline structure, morphology, and constitution of elements in CuO–NiO nanocomposite were confirmed by XRD, Raman, FE-SEM, TEM, XPS, and FT-IR spectroscopy. The CuO–NiO nanocomposite exhibits lower onset potential of 1.37 V in 1 M KOH electrolyte solution by oxygen evolution reaction (OER), the finding onset potential is lower than that of bare Ni. The OER stability test of CuO–NiO nanocomposite was performed in alkaline electrolyte, and it showed more stability for 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.D.L. Smith, M.S. Prévot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K.J. Siu, S. Trudel, C.P. Berlinguette, Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013). https://doi.org/10.1126/science.1233638

    Article  CAS  Google Scholar 

  2. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010). https://doi.org/10.1021/cr100246c

    Article  CAS  Google Scholar 

  3. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). https://doi.org/10.1021/cr1002326

    Article  CAS  Google Scholar 

  4. Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y.S. Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012). https://doi.org/10.1021/jz2016507

    Article  CAS  Google Scholar 

  5. C. Zhu, D. Du, A. Eychmuller, Y. Lin, Engineering ordered and nonordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 115, 8896–8943 (2015). https://doi.org/10.1021/acs.chemrev.5b00255

    Article  CAS  Google Scholar 

  6. L.A. Stern, X. Hu, Enhanced oxygen evolution activity by NiOx and Ni(OH)2 nanoparticles. Faraday Discuss 176, 363–379 (2014). https://doi.org/10.1039/C4FD00120F

    Article  CAS  Google Scholar 

  7. M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan, M.C. Lin, B. Zhang, Y. Hu, D.Y. Wang, J. Yang, S.J. Pennycook, B.J. Hwang, H. Dai, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Comm. 5, 4695–4700 (2014). https://doi.org/10.1038/ncomms5695

    Article  CAS  Google Scholar 

  8. H.W. Park, D.U. Lee, P. Zamani, M.H. Seo, L.F. Nazar, Z. Chen, Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy 10, 192–200 (2014). https://doi.org/10.1016/j.nanoen.2014.09.009

    Article  CAS  Google Scholar 

  9. J.A. Haber, Y. Cai, S. Jung, C. Xiang, S. Mitrovic, J. Jin, A.T. Bellbd, J.M. Gregoire, Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy Environ. Sci. 7, 682–688 (2014). https://doi.org/10.1039/C3EE43683G

    Article  CAS  Google Scholar 

  10. J.A. Haber, E. Anzenburg, J. Yano, C. Kisielowski, J.M. Gregoire, Multiphase nanostructure of a quinary metal oxide electrocatalyst reveals a new direction for OER electrocatalyst design. Adv. Energy Mater. 5, 1402307–1402317 (2015). https://doi.org/10.1002/aenm.201402307

    Article  CAS  Google Scholar 

  11. M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H.J. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 9, 28–46 (2016). https://doi.org/10.1007/s12274-015-0965-x

    Article  CAS  Google Scholar 

  12. D.A. Corrigan, The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377–384 (1987). https://doi.org/10.1149/1.2100463

    Article  CAS  Google Scholar 

  13. M.S. Burke, M.G. Kast, L. Trotochaud, A.M. Smith, S.W. Boettcher, Cobalt–iron (oxy) hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638–3648 (2015). https://doi.org/10.1021/jacs.5b00281

    Article  CAS  Google Scholar 

  14. X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem. Int. Ed. 55, 6290–6294 (2016). https://doi.org/10.1002/anie.201600525

    Article  CAS  Google Scholar 

  15. H. Wang, H.W. Lee, Y. Deng, Z. Lu, P.C. Hsu, Y. Liu, D. Lin, Y. Cui, Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Comm. 6, 7261 (2015). https://doi.org/10.1038/ncomms8261

    Article  CAS  Google Scholar 

  16. J. Kundu, S. Khilari, K. Bhunia, D. Pradhan, Ni-doped CuS as an efficient electrocatalyst for the oxygen evolution reaction. Catal. Sci. Technol. 9, 406–417 (2019). https://doi.org/10.1039/C8CY02181C

    Article  CAS  Google Scholar 

  17. Y.-F. Li, A. Selloni, Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal. 4, 1148–1153 (2014). https://doi.org/10.1021/cs401245q

    Article  CAS  Google Scholar 

  18. P. Liao, J.A. Keith, E.A. Carter, Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis. J. Am. Chem. Soc. 134, 13296–13309 (2012). https://doi.org/10.1021/ja301567f

    Article  CAS  Google Scholar 

  19. C. Li, B. Zhang, Y. Li, S. Hao, X. Cao, G. Yang, J. Wu, Y. Huang, Self-assembled Cu-Ni bimetal oxide 3D in-plane epitaxial structures for highly efficient oxygen evolution reaction. Appl. Catal. B 244, 56–62 (2019). https://doi.org/10.1016/j.apcatb.2018.11.046

    Article  CAS  Google Scholar 

  20. J.S. Kim, B. Kim, H. Kim, K. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 8, 1702774 (2018). https://doi.org/10.1002/aenm.201702774

    Article  CAS  Google Scholar 

  21. M. Qian, X. Liu, S. Cui, H. Jia, P. Du, Copper oxide nanosheets prepared by molten salt method for efficient electrocatalytic oxygen evolution reaction with low catalyst loading. Electrochim. Acta 263, 318–327 (2018). https://doi.org/10.1016/j.electacta.2018.01.053

    Article  CAS  Google Scholar 

  22. J.-P. Zhou, L. Lv, Q. Liu, Y.-X. Zhang, P. Liu, Hydrothermal synthesis and properties of NiFe2O4@BaTiO3 composites with well-matched interface. Sci. Technol. Adv. Mater. 13, 045001 (2012). https://doi.org/10.1088/1468-6996/13/4/045001

    Article  CAS  Google Scholar 

  23. M.D. Merrill, R.C. Dougherty, Metal oxide catalysts for the evolution of O2 from H2O. J. Phys. Chem. C 112, 3655–3666 (2008). https://doi.org/10.1021/jp710675m

    Article  CAS  Google Scholar 

  24. K.H. Kim, J.Y. Zheng, W. Shin, Y.S. Kang, Preparation of dendritic NiFe films by electrodeposition for oxygen evolution. RSC Adv. 2, 4759–4767 (2012). https://doi.org/10.1039/C2RA20241G

    Article  CAS  Google Scholar 

  25. D. Gangasingh, J.B. Talbot, Anomalous electrodeposition of nickel–iron. J. Electrochem. Soc. 138, 3605–3611 (1991). https://doi.org/10.1149/1.2085466

    Article  CAS  Google Scholar 

  26. T.N. Diva, K. Zare, F. Taleshi, M. Yousefi, Synthesis, characterization, and application of nickel oxide/CNT nanocomposites to remove Pb2+ from aqueous solution. J. Nanostruct. Chem. 7, 273–281 (2017). https://doi.org/10.1007/s40097-017-0239-0

    Article  CAS  Google Scholar 

  27. J.X. Kang, W.Z. Zhao, G.F. Zhang, Influence of electrodeposition parameters on the deposition rate and microhardness of nanocrystalline Ni coatings. Surf. Coat. Technol. 203, 1815–1818 (2009). https://doi.org/10.1016/j.surfcoat.2009.01.003

    Article  CAS  Google Scholar 

  28. P. Sahoo, S.K. Das, Tribology of electroless nickel coatings—a review. Mater. Des. 32, 1760–1775 (2011). https://doi.org/10.1016/j.matdes.2010.11.013

    Article  CAS  Google Scholar 

  29. F. Fanicchia, D. Axinte, J. Kell, R. McIntyre, G. Brewster, A.D. Norton, Combustion flame spray of CoNiCrAlY & YSZ coatings. Surf. Coat. Technol. 315, 546–557 (2017). https://doi.org/10.1016/j.surfcoat.2017.01.070

    Article  CAS  Google Scholar 

  30. B.Q. Li, C. Tang, H.F. Wang, X.L. Zhu, Q. Zhang, An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance. Sci. Adv. 2, e1600495 (2016). https://doi.org/10.1126/sciadv.1600495

    Article  CAS  Google Scholar 

  31. N. Travitzky, P. Kumar, K.H. Sandhage, R. Janssen, N. Claussen, Rapid synthesis of Al2O3 reinforced Fe–Cr–Ni composites. Mater. Sci. Eng. A 344, 245–252 (2003). https://doi.org/10.1016/S0921-5093(02)00419-7

    Article  Google Scholar 

  32. G. Manibalan, G. Murugadoss, R. Thangamuthu, P. Ragupathy, R. Mohan Kumar, R. Jayavel, Enhanced electrochemical supercapacitor and excellent amperometric sensor performance of heterostructure CeO2–CuO nanocomposites via chemical route. Appl. Surf. Sci. 456, 104–113 (2018). https://doi.org/10.1016/j.apsusc.2018.06.071

    Article  CAS  Google Scholar 

  33. E.F.A. Zeid, A.M. Nassar, M.A. Hussein, M.M. Alam, A.M. Asiri, H.H. Hegazy, M.M. Rahman, Mixed oxides CuO–NiO fabricated for selective detection of 2-aminophenol by electrochemical approach. J. Mater. Res. Technol. 9, 1457–1467 (2020). https://doi.org/10.1016/j.jmrt.2019.11.071

    Article  CAS  Google Scholar 

  34. A. Rahdar, M. Aliahmad, Y. Azizi, N. Keikha, M. Moudi, F. Keshavarzi, CuO–NiO nano composites: synthesis, characterization, and cytotoxicity ‎evaluation. Nanomed. Res. J. 2, 78–86 (2017). https://doi.org/10.22034/NMRJ.2017.56956.1057

    Article  CAS  Google Scholar 

  35. H. Chen, C.-L. Li, N. Li, K.-X. Xiang, Z.-L. Hu, Facile synthesis of CuO–NiO nanocomposites with high surface areas and their application for lithium-ion batteries. Micro Nano Lett. 8, 544–548 (2013). https://doi.org/10.1049/mnl.2013.0330

    Article  CAS  Google Scholar 

  36. D.L.A. de Faria, F.N. Lopes, Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them? Vib. Spectrosc. 45, 117–121 (2007). https://doi.org/10.1016/j.vibspec.2007.07.003

    Article  CAS  Google Scholar 

  37. D.L.A. Faria, S.V. Silva, M.T. de Oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873–878 (1997)

    Article  Google Scholar 

  38. M. Mizoshiri, K. Nishitani, S. Hata, Effect of heat accumulation on femtosecond laser reductive sintering of mixed CuO/NiO nanoparticles. Micromachines 9, 1–10 (2018). https://doi.org/10.3390/mi9060264

    Article  Google Scholar 

  39. S.K. Shinde, D.P. Dubal, G.S. Ghodake, P.G. Romero, S. Kimc, V.J. Fulari, Influence of Mn incorporation on the supercapacitive properties of hybrid CuO/Cu(OH)2 electrodes. RSC Adv. 5, 30478–30484 (2015). https://doi.org/10.1039/c5ra01093d

    Article  CAS  Google Scholar 

  40. V. Prakash, R.K. Diwan, U.K. Niyogi, Characterization of synthesized copper oxide nanopowders and their use in nanofluids for enhancement of thermal conductivity. Indian J. Pure Appl. Phys. 53, 753–758 (2015)

    Google Scholar 

  41. M.N. Siddique, A. Ahmed, T. Ali, P. Tripathi, Investigation of optical properties of nickel oxide nanostructures using photoluminescence and diffuse reflectance spectroscopy. AIP Conf. Proc. 2018, 1–4 (1953). https://doi.org/10.1063/1.5032362

    Article  CAS  Google Scholar 

  42. K. Deepa, T.V. Venkatesha, C. Nagaraja, M.R. Vinutha, Electrochemical corrosion studies of Zn–CuO and Zn–NiO–CuO composite coatings on mild steel. Anal. Bioanal. Electrochem. 9, 374–389 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Murugadoss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.P., Murugadoss, G. & Kumar, M.R. Synthesis and characterization of CuO–NiO nanocomposite: highly active electrocatalyst for oxygen evolution reaction application. J Mater Sci: Mater Electron 31, 11286–11294 (2020). https://doi.org/10.1007/s10854-020-03677-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03677-0

Navigation