Skip to main content
Log in

Correlation between efficiency and device characterization in MAPbI3-xClx standard perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hybrid organic–inorganic halide perovskite solar cells (PSCs) have gained exceptional attention in photovoltaic fields with an attractive yield of 25%. Characterization tools present as an important means that would help define optimized treatment parameters at an early stage of device manufacturing, instead of measuring the J (V) curves of complete solar cells. In this work, devices with planar NIP architecture ITO/SnO2/MAPbI3-xClx/HTL/Au were elaborated using one-step deposition method. The effects of annealing temperature of the ETL layer (SnO2) and various materials as an HTL layer have been studied. In parallel, X-ray diffraction, UV–visible absorption and photoluminescence were performed as well as photoluminescence spectroscopy, to analyze the active layer crystallinity, absorption properties and to probe charge transfer between perovskite and interface layers. By varying processing parameters, device efficiency could be raised from 10% up to 13.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    CAS  Google Scholar 

  2. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, M. Grätzel, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)

    Google Scholar 

  3. H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)

    CAS  Google Scholar 

  4. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)

    CAS  Google Scholar 

  5. M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016)

    CAS  Google Scholar 

  6. https://www.nrel.gov/pv/cell-efficiency.html.

  7. H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013)

    CAS  Google Scholar 

  8. S. Gamliel, L. Etgar, Organo-metal perovskite based solar cells: sensitized versus planar architecture. RSC Adv. 4(55), 29012–29021 (2014)

    CAS  Google Scholar 

  9. J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6(6), 1739–1743 (2013)

    CAS  Google Scholar 

  10. J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 65% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011)

    CAS  Google Scholar 

  11. N.G. Park, Organometal perovskite light absorbers toward a 20% efficiency low cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4(15), 2423–2429 (2013)

    CAS  Google Scholar 

  12. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)

    CAS  Google Scholar 

  13. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013)

    CAS  Google Scholar 

  14. H. Mehdi, A. Mhamdi, A. Bouazizi, Effect of perovskite precursor ratios and solvents volume on the efficiency of MAPbI3-xClx mixed halide perovskite solar cells. Mater. Sci. Semicond. Process. 109, 104915 (2020)

    CAS  Google Scholar 

  15. L. Fan, Y. Ding, J. Luo, B. Shi, X. Yao, C. Wei, A. Hagfeldt, Elucidating the role of chlorine in perovskite solar cells. J. Mater. Chem. A 5(16), 7423–7432 (2017)

    CAS  Google Scholar 

  16. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013)

    CAS  Google Scholar 

  17. H. Mehdi, A. Mhamdi, R. Hannachi, A. Bouazizi, MAPbBr 3 perovskite solar cells via a two-step deposition process. RSC Adv. 9(23), 12906–12912 (2019)

    CAS  Google Scholar 

  18. I.M. Dharmadasa, Y. Rahaq, A.A. Ojo, T.I. Alanazi, Perovskite solar cells: a deep analysis using current–voltage and capacitance. J. Mater. Sci. Mater. Electron. 30(2), 1227–1235 (2019)

    CAS  Google Scholar 

  19. W. Kim, J. Park, H. Kim, Y. Pak, H. Lee, G.Y. Jung, Sequential dip-spin coating method: fully infiltration of MAPbI3-xClx into mesoporous TiO2 for stable hybrid perovskite solar cells. Electrochim. Acta 245, 734–741 (2017)

    CAS  Google Scholar 

  20. Y. Li, X. Qi, W. Wang, C. Gao, N. Zhu, G. Liu, Y. Zhang, F. Lv, B. Qu, Planar inverted perovskite solar cells based on the electron transport layer of PC61BM: ITIC. Synth. Met. 245, 116–120 (2018)

    CAS  Google Scholar 

  21. H. Mehdi, A. Mhamdi, A. Bouazizi, Effect of annealing treatment on the properties of inverted solar cells based on mixed halide perovskite. Physica E 119, 114000 (2020)

    CAS  Google Scholar 

  22. A. Dubey, N. Adhikari, S. Mabrouk, F. Wu, K. Chen, S. Yang, Q. Qiao, Astrategic review on processing routes towards highly efficient perovskite solar cells. J. Mater. Chem. A 6(6), 2406–2431 (2018)

    CAS  Google Scholar 

  23. M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016)

    CAS  Google Scholar 

  24. W. Rehman, D.P. McMeekin, J.B. Patel, R.L. Milot, M.B. Johnston, H.J. Snaith, L.M. Herz, Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 10(1), 361–369 (2017)

    CAS  Google Scholar 

  25. Y.H. Seo, E.C. Kim, S.P. Cho, S.S. Kim, S.I. Na, High-performance planar perovskite solar cells: Influence of solvent upon performance. Appl. Mater. Today 9, 598–604 (2017)

    Google Scholar 

  26. J. Zhang, F. Li, K. Yang, C.P. Veeramalai, T. Guo, Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode. Appl. Surf. Sci. 369, 308–313 (2016)

    CAS  Google Scholar 

  27. G. Wang, J. Liu, K. Chen, R. Pathak, A. Gurung, Q. Qiao, High-performance carbon electrode-based CsPbI2Br inorganic perovskite solar cell based on poly (3-hexylthiophene)-carbon nanotubes composite hole-transporting layer. J. Colloid Interface Sci. 555, 180–186 (2019)

    CAS  Google Scholar 

  28. M.S. Chowdhury, S.A. Shahahmadi, P. Chelvanathan, S.K. Tiong, N. Amin, K. Techato, N. Nuthammachot, T. Chowdhury, M. Suklueng, Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results Phys. 16, 102839 (2020)

    Google Scholar 

  29. D. Liu, S. Li, P. Zhang, Y. Wang, R. Zhang, H. Sarvari, F. Wang, J. Wu, Z. Wang, Z.D. Chen, Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy 31, 462–468 (2017)

    CAS  Google Scholar 

  30. A. Mhamdi, H. Mehdi, A. Bouazizi, G. Garcia-Belmonte, One-step methylammonium lead bromide films: effect of annealing treatment. J. Mol. Struct. 1192, 1–6 (2019)

    CAS  Google Scholar 

  31. Z. Zhu, X. Zheng, Y. Bai, T. Zhang, Z. Wang, S. Xiao, S. Yang, Mesoporous SnO2 single crystals as an effective electron collector for perovskite solar cells. Phys. Chem. Chem. Phys. 17(28), 18265–18268 (2015)

    CAS  Google Scholar 

  32. L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, H. Chen, Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self assembling monolayer. J. Am. Chem. Soc. 137(7), 2674–2679 (2015)

    CAS  Google Scholar 

  33. J. Geng, B.S. Kong, S.B. Yang, S.C. Youn, S. Park, T. Joo, H.T. Jung, Effect of SWNT defects on the electron transfer properties in P3HT/SWNT hybrid materials. Adv. Func. Mater. 18(18), 2659–2665 (2008)

    CAS  Google Scholar 

  34. J.C. Ke, Y.H. Wang, K.L. Chen, C.J. Huang, Effect of temperature annealing treatments and acceptors in CH3NH3PbI3 perovskite solar cell fabrication. J. Alloy. Compd. 695, 2453–2457 (2017)

    CAS  Google Scholar 

  35. T.Y. Chiang, G.L. Fan, J.Y. Jeng, K.C. Chen, P. Chen, T.C. Wen, K.T. Wong, Functional p-type, polymerized organic electrode interlayer in CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells. ACS Appl. Mater. Interfaces. 7(44), 24973–24981 (2015)

    CAS  Google Scholar 

  36. M. Jiang, J. Wu, F. Lan, Q. Tao, D. Gao, G. Li, Enhancing the performance of planar organo-lead halide perovskite solar cells by using a mixed halide source. J. Mater. Chem. A 3(3), 963–967 (2015)

    CAS  Google Scholar 

  37. C. Huang, N. Fu, F. Liu, L. Jiang, X. Hao, H. Huang, Highly efficient perovskite solar cells with precursor composition-dependent morphology. Sol. Energy Mater. Sol. Cells 145, 231–237 (2016)

    CAS  Google Scholar 

  38. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395 (2013)

    CAS  Google Scholar 

  39. T. Baikie, N.S. Barrow, Y. Fang, P.J. Keenan, P.R. Slater, R.O. Piltz, T.J. White, A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X= I, Br and Cl). J. Mater. Chem. A 3(17), 9298–9307 (2015)

    CAS  Google Scholar 

  40. C. Sun, Y. Guo, B. Fang, L. Guan, H. Duan, Y. Chen, H. Liu, Facile preparation of high-quality perovskites for efficient solar cells via a fast conversion of wet PbI2 precursor films. RSC Adv. 7(36), 22492–22500 (2017)

    CAS  Google Scholar 

  41. Y. Liu et al., Fabrication and photovoltaic performance of niobium doped TiO2 hierarchical microspheres with exposed 001 facets and high specific surface area. Appl. Surf. Sci. 410, 241–248 (2017)

    CAS  Google Scholar 

  42. T.J. Jacobsson, J.P. Correa-Baena, E. HalvaniAnaraki, B. Philippe, S.D. Stranks, M.E. Bouduban, H. Rensmo, Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138(32), 10331–10343 (2016)

    CAS  Google Scholar 

  43. B.W. Park, B. Philippe, T. Gustafsson, K. Sveinbjörnsson, A. Hagfeldt, E.M. Johansson, G. Boschloo, Enhanced crystallinity in organic–inorganic lead halide perovskites on mesoporous TiO2 via disorder–order phase transition. Chem. Mater. 26(15), 4466–4471 (2014)

    CAS  Google Scholar 

  44. X. Cao, L. Zhi, Y. Jia, Y. Li, K. Zhao, X. Cui, J. Wei, Enhanced efficiency of perovskite solar cells by introducing controlled chloride incorporation into MAPbI3 perovskite films. Electrochim. Acta 275, 1–7 (2018)

    CAS  Google Scholar 

  45. Z. Zhu, Y. Bai, X. Liu, C.C. Chueh, S. Yang, A.K.Y. Jen, Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv. Mater. 28(30), 6478–6484 (2016)

    CAS  Google Scholar 

  46. S. Juillard,  Optimisation des interfaces de systèmes PV organiques encapsulés. Doctoral dissertation, Grenoble Alpes, 2018.

  47. S. Jin, Y. Wei, F. Huang, X. Yang, D. Luo, Y. Fang, J. Wu, Enhancing the perovskite solar cell performance by the treatment with mixed anti-solvent. J. Power Sour. 404, 64–72 (2018)

    CAS  Google Scholar 

  48. H.B. Kim, I. Im, Y. Yoon, S. Do Sung, E. Kim, J. Kim, W.I. Lee, Enhancement of photovoltaic properties of CH3NH3PbBr3 heterojunction solar cells by modifying mesoporous TiO2 surfaces with carboxyl groups. J. Mater. Chem. A 3(17), 9264–9270 (2015)

    CAS  Google Scholar 

  49. F. Xia, Q. Wu, P. Zhou, Y. Li, X. Chen, Q. Liu, J. Zhu, S. Dai, Y. Lu, S. Yang, Efficiency enhancement of inverted structure perovskite solar cells via oleamide doping of PCBM electron transport layer. ACS Appl. Mater. Interfaces 7(24), 13659–13665 (2015)

    CAS  Google Scholar 

  50. S. Mabrouk, M. Zhang, Z. Wang, M. Liang, B. Bahrami, Y. Wu, J. Wu, Q. Qiao, S. Yang, Dithieno [3, 2-b: 2′, 3′-d] pyrrole-based hole transport materials for perovskite solar cells with efficiencies over 18%. J. Mater. Chem. A 6(17), 7950–7958 (2018)

    CAS  Google Scholar 

  51. X. Huang, K. Wang, C. Yi, T. Meng, X. Gong, Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT: PSS hole transport layer. Adv. Energy Mater. 6(3), 1501773 (2016)

    Google Scholar 

  52. P. Chen, E. Wang, X. Yin, H. Xie, M. Que, B. Gao, W. Que, Additive-assisted one-step formed perovskite/hole conducting materials graded heterojunction for efficient perovskite solar cells. J. Colloid Interface Sci. 532, 182–189 (2018)

    CAS  Google Scholar 

  53. F. Wu, R. Pathak, K. Chen, G. Wang, B. Bahrami, W.H. Zhang, Q. Qiao, Invertedcurrent–voltage hysteresis in perovskitesolarcells. ACS Energy Lett. 3(10), 2457–2460 (2018)

    CAS  Google Scholar 

  54. F. Wu, B. Bahrami, K. Chen, S. Mabrouk, R. Pathak, Y. Tong, X. Li, T. Zhang, R. Jian, Q. Qiao, Bias-dependent normal and inverted J-V hysteresis in perovskitesolarcells. ACS Appl. Mater. Interfaces 10(30), 25604–25613 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanadi Mehdi.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdi, H., Matheron, M., Mhamdi, A. et al. Correlation between efficiency and device characterization in MAPbI3-xClx standard perovskite solar cells. J Mater Sci: Mater Electron 31, 10251–10259 (2020). https://doi.org/10.1007/s10854-020-03571-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03571-9

Navigation