Skip to main content

Advertisement

Log in

Significant enhancement in the hydrogen-sensing performance of polypyrrole/titanium oxide (PPy/TiO2) hybrid sensors by a chemical oxidation polymerization approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Novel polypyrrole/titanium oxide (PPy/TiO2) hybrid sensors were fabricated by an in situ chemical oxidation polymerization approach. The structural and morphological information of the sensing films were analyzed through X-ray diffraction, atomic force microscopy and Raman analysis. The huge surface area (121 m2/g) and highly porous nature (15–20 nm) of the PPy/TiO2 composite film was identified via a N2 adsorption–desorption analysis. The resistance-type gas sensors were fabricated and monitored CO2 and H2 gases with different ppm levels. The results revealed that PPy/TiO2 composite film sensors showed a tremendous gas-sensing response (66%), and fast response (19 s) and recovery times (27 s) with long-term stability. The sensing characteristics were further monitored using different voltaic gases like NH3, NO2, LPG and SO2, etc., and the sensors exhibited good selectivity and a higher response towards H2 gas than other gas spices. The proposed sensors are a promising material for application in the hydrogen gas sensor industries. The sensing mechanism is also elaborated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.J. Docherty, C.T. Lin, H.J. Joyce, R.J. Nichola, L.M. Herz, L.J. Li, M.B. Johnston, Extreme sensitivity of graphene photoconductivity to environmental gases. Nat. Commun. 3, 1228 (2012)

    Article  Google Scholar 

  2. Y. Yan, C. Wladyka, J. Fujii, S. Sockanathan, Prdx4 is a compartment-specific H2O2 sensor that regulates neurogenesis by controlling surface expression of GDE2. Nat. Commun. 6, 7006 (2015)

    Article  Google Scholar 

  3. P. Lehner, C. Staudinger, S.M. Borisov, I. Klimant, Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems. Nat. Commun. 5, 4460 (2014)

    Article  CAS  Google Scholar 

  4. J. Ma, L. Mei, Y. Chen, Q. Li, T. Wang, Z. Xu, X. Duan, W. Zheng, α-Fe2O3 nanochains: ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H2S gas. Nanoscale 3, 895–898 (2013)

    Article  Google Scholar 

  5. S. Xu, J. Gao, L. Wang, K. Kan, Y. Xie, P. Shen, L. Li, K. Shi, Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NOx at room temperature. Nanoscale 7, 14643–14651 (2015)

    Article  CAS  Google Scholar 

  6. M.W.G. Hoffmann, J.D. Prades, L. Mayrhofer, F. Hernandez-Ramirez, T.T. Järvi, M. Moseler, A. Waag, H. Shen, Highly selective SAM-nanowire hybrid NO2 sensor: insight into charge transfer dynamics and alignment of frontier molecular orbitals. Adv. Funct. Mater. 24, 595–602 (2014)

    Article  CAS  Google Scholar 

  7. E.R. Leite, I.T. Weber, E. Longo, J.A. Varela, A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater. 12, 965–968 (2000)

    Article  CAS  Google Scholar 

  8. J. Liu, X. Wang, Q. Peng, Y. Li, Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials. Adv. Mater. 17, 764–767 (2005)

    Article  CAS  Google Scholar 

  9. N. Izu, G. Hagen, D. Schönauer, U. Röder-Roith, R. Moos, Application of V2O5/WO3/TiO2 for resistive-type SO2 sensors. Sensors 11, 2982–2991 (2011)

    Article  CAS  Google Scholar 

  10. W. Weppner, Solid-state electrochemical gas sensor. Sens. Actuators 12, 107–119 (1987)

    Article  CAS  Google Scholar 

  11. N. Miura, M. Nakatou, S. Zhuiykov, Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature. Sens. Actuators B Chem. 93, 221–228 (2003)

    Article  CAS  Google Scholar 

  12. G.S. Kulkarni, K. Reddy, Z. Zhong, X. Fan, Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat. Commun. 5, 4376 (2014)

    Article  CAS  Google Scholar 

  13. S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhanen, Ultrafast graphene oxide humidity sensors. ACS Nano 7, 11166–11173 (2013)

    Article  CAS  Google Scholar 

  14. Z. Chen, A. Umar, S. Wang, Y. Wang, T. Tian, Y. Shang, Y. Fan, Q. Qi, D. Xu, L. Jiang, Supramolecular fabrication of multilevel graphene-based gas sensors with high NO2 sensibility. Nanoscale 7, 10259–10266 (2015)

    Article  CAS  Google Scholar 

  15. V.E. Bochenkov, G.B. Sergeev, Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures, in Metal Oxide Nanostructures and Their Applications, ed. by A. Umar, Y.-B. Hahn (American Scientific, Cambridge, 2010), pp. 31–52

    Google Scholar 

  16. R. Frua, H. Kawasaki, G.W. Harrison, P. Wima, Preparation of high quality nitrogen doped TiO2 thin film as a photo catalyst using a pulsed laser deposition method. Thin Solid Films 162, 453–454 (2004)

    Google Scholar 

  17. L.M. Doeswijka, H.H.C. de Moorb, H. Rogallaa, D.H.A. Blanka, Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition. Appl. Surf. Sci. 186, 453–457 (2002)

    Article  Google Scholar 

  18. L. Zhang, K. Zhao, W. Xu, Integrated SnO2 nanorod array with polypyrrole coverage for high-rate and long-life lithium batteries. Phys. Chem. Chem. Phys. 17(2015), 7619–7623 (2015)

    Article  CAS  Google Scholar 

  19. R.K. Sharma, A.C. Rastogi, S.B. Desu, Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochim. Acta 53, 7690–7695 (2008)

    Article  CAS  Google Scholar 

  20. A.C. Sonavane, A.I. Inamdar, D.S. Dalavi, H.P. Deshmukh, P.S. Patil, Simple and rapid synthesis of NiO/PPy thin films with improved electrochromic performance. Electrochim. Acta 55, 2344–2351 (2010)

    Article  CAS  Google Scholar 

  21. K. Dutta, P.P. Chattopadhyay, C.W. Lu, M.S. Ho, P. Bhattacharyya, A highly sensitive BTX sensor based on electrochemically derived wall connected TiO2 nanotubes. Appl. Surf. Sci. 354, 353–361 (2015)

    Article  CAS  Google Scholar 

  22. S. Pandey, Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. J. Sci. Adv. Mater. Dev. 1, 431–453 (2016)

    Google Scholar 

  23. D.E. Park, H.S. Chae, H.J. Choi, A. Maity, Magnetite–polypyrrole core–shell structured microspheres and their dual stimuli-response under electric and magnetic fields. J. Mater. Chem. C 3, 3150–3158 (2015)

    Article  CAS  Google Scholar 

  24. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci. Mater. Electron. 25, 730–735 (2014)

    Article  CAS  Google Scholar 

  25. S. Biswas, L.T. Drzal, Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem. Mater. 22, 5667–5671 (2010)

    Article  CAS  Google Scholar 

  26. F. Li, Y. Gu, Improvement of performance of dye-sensitized solar cells by doping Er2O3 into TiO2 electrodes. Mater. Sci. Semicond. Process. 15(15), 11–14 (2012)

    Article  CAS  Google Scholar 

  27. R. Boopathi Raja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96–104 (2019)

    Article  CAS  Google Scholar 

  28. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@ nanowires grown on Ni foam: design, fabrication and applications in electrochemical energy storage. J. Alloy. Compd. 811, 152084 (2019)

    Article  CAS  Google Scholar 

  29. K. Kowal, K.W.K.M. Kopaczynska, E. Dworniczek, R. Franiczek, M. Wawrzynska, M. Vargova, M. Zahoran, E. Rakovsky, P. Kus, G. Plesch, In-situ photoexcitation of silver-doped titania nanopowders for activity against bacteria and yeasts. J. Colloid Interface Sci. 362, 50–57 (2011)

    Article  CAS  Google Scholar 

  30. E.T. Kang, K.G. Neoh, Y.K. Ong, K.L. Tan, B.T.G. Tan, XPS studies of proton modification and some anion exchange processes in polypyrrole. Synth. Met. 30, 69–80 (1990)

    Article  Google Scholar 

  31. Y. Qiao, L. Shen, M. Wu, Y. Guo, Y. Meng, A novel chemical synthesis of bowl-shaped polypyrrole particles. Mater. Lett. 126, 185–188 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Venkatachalam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaresan, M., Venkatachalam, M., Saroja, M. et al. Significant enhancement in the hydrogen-sensing performance of polypyrrole/titanium oxide (PPy/TiO2) hybrid sensors by a chemical oxidation polymerization approach. J Mater Sci: Mater Electron 31, 8183–8193 (2020). https://doi.org/10.1007/s10854-020-03353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03353-3

Navigation