Skip to main content
Log in

A comparative study for producing few-layer graphene sheets via electrochemical and microwave-assisted exfoliation from graphite powder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene’s astonishing properties drew attention of many scientists to dedicate a lot of their time to find out more about this extraordinary material. However, challenges continue to produce high-quality graphene in large quantities by using inexpensive and readily available methods. In this study, three different graphite powders have been used as starting materials to produce few-layer graphene sheets, which are pure natural graphite (NGr) and two different electrochemically treated expanded graphite EE1 and EE2. Two simple and time-effective techniques have been applied on the samples interchangeably to investigate the order effect on producing graphene sheets in few-layer form. These techniques are sonication in dimethylformamide (DMF) for one hour and rapid microwave irradiation for 30 s. The study suggests that if the graphite powder is treated first with a strong exfoliation reagent followed by microwave irradiation, the obtained graphene will be high-quality few-layer (~ 5 layers). Sonication in DMF has worked to increase the inter-planar spacing between graphite layers, while microwave irradiation has worked to decrease the defect density ratio that resulted after sonication process. Our work suggests a novel route to prepare high-quality few-layer graphene sheets, not only with time efficiency, low-cost, and without using harmful chemicals, but also an adequate method for large-scale high-efficiency production of graphene materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  CAS  Google Scholar 

  2. D. Li, R.B. Kaner, Science 320, 1170 (2008)

    CAS  Google Scholar 

  3. A.C. Neto, F. Guinea, N.M. Peres, Phys. World 19, 33 (2006)

    Google Scholar 

  4. S.R. Dhakate, N. Chauhan, S. Sharma, J. Tawale, S. Singh, P.D. Sahare, R.B. Mathur, Carbon N. Y. 49, 1946 (2011)

    CAS  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    CAS  Google Scholar 

  6. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    CAS  Google Scholar 

  7. A.K. Geim, Science 324, 1530 (2009)

    CAS  Google Scholar 

  8. S. Ren, P. Rong, Q. Yu, Ceram. Int. 44, 11940 (2018)

    CAS  Google Scholar 

  9. F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H.H. Radamson, J. Mater. Sci. Mater. Electron. 26, 4347 (2015)

    CAS  Google Scholar 

  10. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y. Il Song, Nat. Nanotechnol. 5, 574 (2010)

    CAS  Google Scholar 

  11. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Science 324, 1312 (2009)

    CAS  Google Scholar 

  12. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, Nat. Mater. 8, 203 (2009)

    CAS  Google Scholar 

  13. Y. Çelik, E. Flahaut, E. Suvacı, FlatChem 1, 74 (2017)

    Google Scholar 

  14. K.E. Whitener Jr., P.E. Sheehan, Diam. Relat. Mater. 46, 25 (2014)

    CAS  Google Scholar 

  15. S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009)

    CAS  Google Scholar 

  16. X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 131, 15939 (2009)

    CAS  Google Scholar 

  17. M.A. Karimi, F. Banifatemeh, M. Ranjbar, J. Mater. Sci. Mater. Electron. 28, 1844 (2017)

    CAS  Google Scholar 

  18. M.S.A. Bhuyan, M.N. Uddin, M.M. Islam, F.A. Bipasha, S.S. Hossain, Int. Nano Lett. 6, 65 (2016)

    CAS  Google Scholar 

  19. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’ Ko, Nat. Nanotechnol. 3, 563 (2008)

    CAS  Google Scholar 

  20. K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, Nat. Mater. 13, 624 (2014)

    CAS  Google Scholar 

  21. A. Amiri, M. Naraghi, G. Ahmadi, M. Soleymaniha, M. Shanbedi, FlatChem 8, 40 (2018)

    CAS  Google Scholar 

  22. R.S. Edwards, K.S. Coleman, Nanoscale 5, 38 (2013)

    CAS  Google Scholar 

  23. S.R. Dhakate, S. Sharma, M. Borah, R.B. Mathur, T.L. Dhami, Energy Fuels 22, 3329 (2008)

    CAS  Google Scholar 

  24. J. Liu, Graphene-Based Composites for Electrochemical Energy Storage (Springer, New York, 2017)

    Google Scholar 

  25. Y.L. Zhong, Z. Tian, G.P. Simon, D. Li, Mater. Today 18, 73 (2015)

    CAS  Google Scholar 

  26. A. Ambrosi, M. Pumera, Chem. Eur. J. 22, 153 (2016)

    CAS  Google Scholar 

  27. J. Liu, M. Notarianni, G. Will, V.T. Tiong, H. Wang, N. Motta, Langmuir 29, 13307 (2013)

    CAS  Google Scholar 

  28. M. Bhattacharya, T. Basak, Energy 97, 306 (2016)

    Google Scholar 

  29. J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E.G. Calvo, J.M. Bermúdez, Fuel Process. Technol. 91, 1 (2010)

    Google Scholar 

  30. U.O. Méndez, O.V. Kharissova, M. Rodríguez, Rev. Adv. Mater. Sci 5, 398 (2003)

    Google Scholar 

  31. W. Sun, H. Li, Y. Wang, Reports Electrochem. 5, 1 (2015)

    Google Scholar 

  32. Z. Li, Y. Yao, Z. Lin, K.-S. Moon, W. Lin, C. Wong, J. Mater. Chem. 20, 4781 (2010)

    CAS  Google Scholar 

  33. J. Long, M. Fang, G. Chen, J. Mater. Chem. 21, 10421 (2011)

    CAS  Google Scholar 

  34. Z. Xu, H. Li, W. Li, G. Cao, Q. Zhang, K. Li, Q. Fu, J. Wang, Chem. Commun. 47, 1166 (2011)

    CAS  Google Scholar 

  35. J. Shen, T. Li, Y. Long, M. Shi, N. Li, M. Ye, Carbon N. Y. 50, 2134 (2012)

    CAS  Google Scholar 

  36. A.V. Murugan, T. Muraliganth, A. Manthiram, Chem. Mater. 21, 5004 (2009)

    CAS  Google Scholar 

  37. D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin, M. Chhowalla, Science 353, 1413 (2016)

    CAS  Google Scholar 

  38. I. Janowska, K. Chizari, O. Ersen, S. Zafeiratos, D. Soubane, V. Da Costa, V. Speisser, C. Boeglin, M. Houllé, D. Bégin, Nano Res. 3, 126 (2010)

    CAS  Google Scholar 

  39. A.A. Pirzado, G. Dalmas, L. Nguyen-Dinh, I. Komissarov, F. Le Normand, I. Janowska, Curr. Microw. Chem. 3, 139 (2016)

    CAS  Google Scholar 

  40. M.M. Foroughi, M. Ranjbar, J. Mater. Sci. Mater. Electron. 28, 1359 (2017)

    CAS  Google Scholar 

  41. R. Pal, M.J. Akhtar, K.K. Kar, Polym. Test. 70, 8 (2018)

    CAS  Google Scholar 

  42. F. Lei, M. Yang, F. Jiang, H. Zhang, Z. Zhang, D. Sun, Chem. Eng. J. 360, 673 (2019)

    CAS  Google Scholar 

  43. A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    CAS  Google Scholar 

  44. C. Castiglioni, F. Negri, M. Rigolio, G. Zerbi, J. Chem. Phys. 115, 3769 (2001)

    CAS  Google Scholar 

  45. R.P. Vidano, D.B. Fischbach, L.J. Willis, T.M. Loehr, Solid State Commun. 39, 341 (1981)

    CAS  Google Scholar 

  46. V. Georgakilas, Functionalization of Graphene (Wiley, Hoboken, 2014)

    Google Scholar 

  47. A.C. Ferrari, Solid State Commun. 143, 47 (2007)

    CAS  Google Scholar 

  48. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, Phys. Rev. Lett. 97, 187401 (2006)

    CAS  Google Scholar 

  49. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Nano Lett. 6, 2667 (2006)

    CAS  Google Scholar 

  50. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett. 7, 238 (2007)

    CAS  Google Scholar 

  51. W. Gu, W. Zhang, X. Li, H. Zhu, J. Wei, Z. Li, Q. Shu, C. Wang, K. Wang, W. Shen, J. Mater. Chem. 19, 3367 (2009)

    CAS  Google Scholar 

  52. I.M. Afanasov, O.N. Shornikova, D.A. Kirilenko, I.I. Vlasov, L. Zhang, J. Verbeeck, V.V. Avdeev, G. Van Tendeloo, Carbon N. Y. 48, 1862 (2010)

    CAS  Google Scholar 

  53. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, Phys. Rev. B 79, 205433 (2009)

    Google Scholar 

  54. A. Das, B. Chakraborty, A.K. Sood, Bull. Mater. Sci. 31, 579 (2008)

    CAS  Google Scholar 

  55. V. Chabot, B. Kim, B. Sloper, C. Tzoganakis, A. Yu, Sci. Rep. 3, 1378 (2013)

    Google Scholar 

  56. C.-Y. Lee, D.R.G. Mitchell, P. Molino, A. Fahy, G.G. Wallace, Appl. Mater. Today 15, 290 (2019)

    Google Scholar 

  57. Z.H. Shengtao, G. Anyan, G. Huanfang, C.H. Xiangqian, Int. J. Ind. Chem. 2, 123 (2011)

    Google Scholar 

  58. D.W. Chang, E.K. Lee, E.Y. Park, H. Yu, H.-J. Choi, I.-Y. Jeon, G.-J. Sohn, D. Shin, N. Park, J.H. Oh, J. Am. Chem. Soc. 135, 8981 (2013)

    CAS  Google Scholar 

  59. V. Ţucureanu, A. Matei, A.M. Avram, Crit. Rev. Anal. Chem. 46, 502 (2016)

    Google Scholar 

  60. P. Kun, F. Wéber, C. Balázsi, Cent. Eur. J. Chem. 9, 47 (2011)

    CAS  Google Scholar 

  61. Z. Wu, H. Zhong, X. Yuan, H. Wang, L. Wang, X. Chen, G. Zeng, Y. Wu, Water Res. 67, 330 (2014)

    CAS  Google Scholar 

  62. Y. Cheng, S. Zhou, P. Hu, G. Zhao, Y. Li, X. Zhang, W. Han, Sci. Rep. 7, 1439 (2017)

    Google Scholar 

  63. S.G. Prolongo, A. Jiménez-Suárez, R. Moriche, A. Ureña, Eur. Polym. J. 53, 292 (2014)

    CAS  Google Scholar 

  64. S. Han, Q. Meng, S. Araby, T. Liu, M. Demiral, Compos. A 120, 116 (2019)

    CAS  Google Scholar 

  65. L. Xian, X. Xiong, J. Zou, Trans. Nonferrous Met. Soc. China 24, 177 (2014)

    Google Scholar 

  66. L. Liu, M. An, P. Yang, J. Zhang, Int. J. Electrochem. Sci. 10, 1582 (2015)

    Google Scholar 

  67. Z.A. Boeva, K.A. Milakin, M. Pesonen, A.N. Ozerin, V.G. Sergeyev, T. Lindfors, RSC Adv. 4, 46340 (2014)

    CAS  Google Scholar 

  68. Z. Zhang, H. Jin, C. Wu, J. Ji, Nanoscale Res. Lett. 13, 416 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ala K. Jehad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jehad, A.K., Kocabas, K. & Yurddaskal, M. A comparative study for producing few-layer graphene sheets via electrochemical and microwave-assisted exfoliation from graphite powder. J Mater Sci: Mater Electron 31, 7022–7034 (2020). https://doi.org/10.1007/s10854-020-03268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03268-z

Navigation