Skip to main content
Log in

The reliability assessment of Au–Al bonds using parallel gap resistance microwelding

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Au–Al bonding joint was prepared by the parallel gap resistance microwelding. The microstructural evolution of Au–Al bonds was investigated under thermal aging, and the mechanical properties of Au–Al intermetallic compounds (IMCs) were computed by the first-principles calculations. We found that the Au–Al IMCs along with cracks grew during aging time and temperature increasing. The formation of the cracks is explained by the Kirkendall effect, volumetric shrinkages and thermal mismatch. Based on the experimental data, the growth of the IMCs is fitted to the diffusion equation to describe the performance degradation of Au–Al bonds. The Arrhenius relationship is introduced as the acceleration model to describe the effects of thermal stress on lifetime. Furthermore, the Weibull–Arrhenius model is built by the combination of the Weibull distribution and the Arrhenius relationship, which provide a method to estimate the lifetime distribution under work condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.A. Gam, H.J. Kim, J.S. Cho et al., Effects of Cu and Pd addition on Au bonding wire/Al pad interfacial reactions and bond reliability. J. Electron. Mater. 35(11), 2048–2055 (2006)

    Article  CAS  Google Scholar 

  2. Z.W. Zhong, Overview of wire bonding using copper wire or insulated wire. Microelectron. Reliab. 51(1), 4–12 (2011)

    Article  CAS  Google Scholar 

  3. P. Liu, L. Tong, J. Wang et al., Challenges and developments of copper wire bonding technology. Microelectron. Reliab. 52(6), 1092–1098 (2012)

    Article  CAS  Google Scholar 

  4. C.D. Breach, F.W. Wulff, A brief review of selected aspects of the materials science of ball bonding. Microelectron. Reliab. 50(1), 1–20 (2010)

    Article  CAS  Google Scholar 

  5. T.C. Wei, A.R. Daud, Mechanical and electrical properties of Au-Al and Cu-Al intermetallics layer at wire bonding interface. J. Electron. Packag. 125(4), 617–620 (2003)

    Article  CAS  Google Scholar 

  6. Y. Liu, Y. Tian, B. Liu et al., in Interconnection of Cu wire/Au plating pads using parallel gap resistance microwelding process. 2016 17th International Conference on Electronic Packaging Technology. (IEEE, 2016), p. 43–46.

  7. R.P. Sharma, P.K. Khanna, D. Kumar et al., in Development and analysis of noble-metal wire interconnections on Au thick film using parallel gap welding technique for MEMS and microsystems. 2008 International Conference on Recent Advances in Microwave Theory and Applications. (IEEE, 2008), p. 739–741

  8. M.I. Khan, J.M. Kim, M.L. Kuntz et al., Bonding mechanisms in resistance microwelding of 316 low-carbon vacuum melted stainless steel wires. Metall. Mater. Trans. A 40(4), 910–919 (2009)

    Article  Google Scholar 

  9. J.E. Martinez, L.B. Johannes, D. Gonzalez et al., Metallography of battery resistance Spot Welds. Microsc. Microanal. 21(S3), 2427–2428 (2015)

    Article  Google Scholar 

  10. Z. Chen, Joint formation mechanism and strength in resistance microwelding of 316L stainless steel to Pt wire. J. Mater. Sci. 42(14), 5756–5765 (2007)

    Article  CAS  Google Scholar 

  11. M.O. Alam, H. Lu, C. Bailey et al., Fracture mechanics analysis of solder joint intermetallic compounds in shear test. Comput. Mater. Sci. 45(2), 576–583 (2009)

    Article  CAS  Google Scholar 

  12. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)

    Article  CAS  Google Scholar 

  13. Y. Tian, W. Zhou, P. Wu, A density functional investigation of the structural, elastic and thermodynamic properties of the Au–Sn intermetallics. J. Electron. Mater. 45(1), 639–647 (2016)

    Article  CAS  Google Scholar 

  14. J.L. Murray, H. Okamoto, T.B. Massalski, The Al-Au (aluminum-gold) system. Bull. Alloy Ph. Diagr. 8(1), 20–30 (1987)

    Article  CAS  Google Scholar 

  15. H. Xu, C. Liu, V.V. Silberschmidt et al., Intermetallic phase transformations in Au-Al wire bonds. Intermetallics 19(12), 1808–1816 (2011)

    Article  CAS  Google Scholar 

  16. H. Xu, C. Liu, V.V. Silberschmidt et al., A micromechanism study of thermosonic gold wire bonding on aluminum pad. J. Appl. Phys. 108(11), 113517 (2010)

    Article  Google Scholar 

  17. S.Q. Wang, H.Q. Ye, Ab initio elastic constants for the lonsdaleite phases of C, Si and Ge. J. Phys.: Condens. Matter 15(30), 5307 (2003)

    CAS  Google Scholar 

  18. J.H. Westbrook, R.L. Fleischer, Basic Mechanical Properties and Lattice Defects of Intermetallic Compounds (Wiley, Chichester, 2000)

    Google Scholar 

  19. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65(5), 349 (1952)

    Article  Google Scholar 

  20. H. Springer, A. Kostka, J.F. Dos Santos et al., Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys. Mater. Sci. Eng. A 528(13–14), 4630–4642 (2011)

    Article  Google Scholar 

  21. H. Xu, C. Liu, V.V. Silberschmidt et al., New mechanisms of void growth in Au–Al wire bonds: volumetric shrinkage and intermetallic oxidation. Scripta Mater. 65(7), 642–645 (2011)

    Article  CAS  Google Scholar 

  22. G. Neumann, C. Tuijn, Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data (Elsevier, Amsterdam, 2011)

    Google Scholar 

  23. G.B. Stephenson, Deformation during interdiffusion. Acta Metall. 36(10), 2663–2683 (1988)

    Article  CAS  Google Scholar 

  24. L. Shen, A.Q. Foo, S. Wang et al., Enhancing creep resistance of SnBi solder alloy with non-reactive nano fillers: a study using nanoindentation. J. Alloys Compd. 729, 498–506 (2017)

    Article  CAS  Google Scholar 

  25. J. Shen, Y.C. Chan, S.Y. Liu, Growth mechanism of Ni3Sn4 in a Sn/Ni liquid/solid interfacial reaction. Acta Mater. 57(17), 5196–5206 (2009)

    Article  CAS  Google Scholar 

  26. A.K. Gain, Y.C. Chan, Growth mechanism of intermetallic compounds and damping properties of Sn-Ag-Cu-1 wt% nano-ZrO2 composite solders. Microelectron. Reliab. 54(5), 945–955 (2014)

    Article  CAS  Google Scholar 

  27. C. Weaver, D.T. Parkinson, Diffusion in gold-aluminium. Philos. Mag. 22(176), 377–389 (1970)

    Article  CAS  Google Scholar 

  28. H. Rinne, The Weibull Distribution: A Handbook (Chapman and Hall/CRC, Boca Raton, 2008)

    Book  Google Scholar 

  29. S.J. Bae, S.J. Kim, J.I. Park et al., Lifetime prediction through accelerated degradation testing of membrane electrode assemblies in direct methanol fuel cells. Int. J. Hydrogen Energy 35(17), 9166–9176 (2010)

    Article  CAS  Google Scholar 

  30. R.M. Dahlquist-Willard, M.N. Marshall, S.L. Betts et al., Development and validation of a Weibull-Arrhenius model to predict thermal inactivation of black mustard (Brassica nigra) seeds under fluctuating temperature regimens. Biosyst. Eng. 151, 350–360 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51572190).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sen Cong or Ping Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Cong, S., Tan, X. et al. The reliability assessment of Au–Al bonds using parallel gap resistance microwelding. J Mater Sci: Mater Electron 31, 6313–6320 (2020). https://doi.org/10.1007/s10854-020-03187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03187-z

Navigation