Skip to main content
Log in

Polymer-assisted chemical solution deposition of high-quality La2Zr2O7 buffer layer applied to low-cost YBCO-coated conductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Through a simple and low-cost way to gain the precursor solution, high-quality La2Zr2O7 (LZO) buffer layers approximately 300 nm thick only by one single coating were successfully deposited on the textured Ni-5at%W alloy substrates using an independently developed new method of polymer-assisted chemical solution deposition (PA-CSD) with and without Y2O3 seed layer. Highly epitaxial YBa2Cu3O7−x (YBCO) thin film with thickness of 500 nm is managed to be deposited on LZO/Y2O3/NiW. A study was made on the buffers and YBCO films with XRD, AFM, FIB-SEM, ESEM, and through superconducting critical temperature (Tc) analyses, and it was found that the Y2O3 seed layer had a good effect in improving the c-axis texture for the performance of LZO thin films. More importantly, the value of the self-field critical current density (Jc) of YBCO film on LZO/Y2O3/NiW architecture was 1.6 MA/cm2 at 77 K. Our results indicated that the low-cost and effective way to develop high-performance YBCO-coated conductors on the basis of high-quality LZO buffer layer were suitable candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Larbalestier, A. Gurevich, D. Matthew Feldmann, A. Polyanskii, Nature 414, 368–377 (2001)

    Article  CAS  Google Scholar 

  2. V. Matias, B.J. Gibbons, T. Findikoglu, S. Kreiskott, L. Bronisz, D. Peterson, IEEE Trans Appl. Supercond. 13(2), 2488–2491 (2003)

    Article  CAS  Google Scholar 

  3. T. Watanabe, Y. Shiohara, T. Izumi, IEEE Trans Appl. Supercond. 13(2), 2445–2451 (2003)

    Article  CAS  Google Scholar 

  4. C. Ren, H.L. Suo, M. Liu et al., Ceram. Int. 41(8), 9244–9250 (2015)

    Article  CAS  Google Scholar 

  5. A. Goyal, M. Paranthaman, U. Schoop, MRS Bull. 29(8), 552–561 (2010)

    Article  Google Scholar 

  6. R. Bhattacharya, S. Phok, W. Zhao et al., IEEE Trans. Appl. Supercond. 19(3), 3451–3454 (2009)

    Article  CAS  Google Scholar 

  7. F. Feng, Y. Zhang, T. Qu et al., Mater. Express 5(6), 534–540 (2015)

    Article  CAS  Google Scholar 

  8. J. Xiong, X.B. Wang, P. Guo et al., J. Mater. Sci. Mater. Electron. 24, 1546–1550 (2013)

    Article  CAS  Google Scholar 

  9. R. Zhao, F. Fan, W.B. Qiu et al., IEEE Trans. Appl. Supercond. 23(3), 6602104–6602104 (2013)

    Article  Google Scholar 

  10. X. Zhang, Y.D. Xia, C. Ke et al., Mater. Lett. 178, 132–134 (2016)

    Article  CAS  Google Scholar 

  11. T. Hayashi, S. Nakamura, M. Iwakuma et al., Phys. Procedia 36, 1522–1527 (2012)

    Article  CAS  Google Scholar 

  12. M. Sohma, T. Kumagai, T. Nakamura et al., Phys. Procedia 45, 177–180 (2013)

    Article  CAS  Google Scholar 

  13. J. Xiong, Y. Chen, Y. Qiu et al., Supercond. Sci. Technol. 19(10), 1068–1072 (2006)

    Article  CAS  Google Scholar 

  14. Y.D. Xia, J. Xiong, X. Zhang et al., J. Supercond. Nov. Magn. 27(3), 871–875 (2014)

    Article  CAS  Google Scholar 

  15. X. Zhang, Y. Zhao, Y.D. Xia et al., Phys. C 513, 18–23 (2015)

    Article  CAS  Google Scholar 

  16. L.L. Ying, F. Fan, B. Gao et al., Phys. C 470(13), 543–546 (2010)

    Article  CAS  Google Scholar 

  17. E. Celik, O. Sayman et al., Mater. Des. 28(7), 2184–2189 (2007)

    Article  CAS  Google Scholar 

  18. S. Sathyamurthy, M. Paranthaman et al., IEEE Trans. Appl. Supercond. 15(2), 2974–2976 (2005)

    Article  CAS  Google Scholar 

  19. N. Dejang, A. Watcharapasorn et al., Surf. Coat. Technol. 204(9–10), 1651–1657 (2010)

    Article  CAS  Google Scholar 

  20. J. Eickemeyer, D. Selbmann et al., Appl. Phys. Lett. 90(1), 012510 (2007)

    Article  Google Scholar 

  21. K. Kakimoto, M. Igarashi, S. Hanyu et al., Phys. C 471(21–22), 929–931 (2011)

    Article  CAS  Google Scholar 

  22. W. Prusseit et al., Phys. Procedia 36, 1417–1422 (2012)

    Article  CAS  Google Scholar 

  23. U.O.A. Arier, F.Z. Tepehan, Compos. B 45, 682–687 (2013)

    Article  Google Scholar 

  24. S. Ramesh et al., Compos. B 75, 167–175 (2015)

    Article  CAS  Google Scholar 

  25. C.H. Campos, B.F. Urbano, B.L. Rivas, Compos. B 57, 1–7 (2014)

    Article  CAS  Google Scholar 

  26. J.H. Lee, J. Marroquin et al., Compos. B 45, 682–687 (2013)

    Article  CAS  Google Scholar 

  27. H. Kozuka, S. Takenaka, J. Am. Ceram. Soc. 85, 2696–2702 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51702265). The authors would like to thank the Jinsheng Li scholarship for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhang or Jinfang Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, X., Xia, Y. et al. Polymer-assisted chemical solution deposition of high-quality La2Zr2O7 buffer layer applied to low-cost YBCO-coated conductors. J Mater Sci: Mater Electron 31, 5617–5621 (2020). https://doi.org/10.1007/s10854-020-03128-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03128-w

Navigation