Skip to main content

Advertisement

Log in

Strengthening of DBA substrate with Ni/Ti/Ag metallization for thermal fatigue-resistant Ag sinter joining in GaN power modules

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study was carried out to develop a DBA (direct bonded aluminum) substrate with Ni/Ti/Ag metallization to achieve highly functional thermal shock stability of Ag sinter joining in GaN (Gallium Nitride) power modules. GaN /DBA die-attached module structures by Ag sinter joining was performed during harsh thermal shock cycling tests within a temperature range of − 50/250 °C. In the case of DBA without a Ni metallization layer (Ti/Ag), severe degradation occurred at the interface between the sintered Ag and Al due to significant plastic deformation of the Al layer. The shear strength decreased from an initial value of 33.1 MPa to 22.3 MPa after 500 cycles. With EBSD investigation, it was determined that the Al layer underwent sub-grain rotation recrystallization during thermal shock cycles. This led to a non-uniform grain orientation distribution at center and corner locations. On the other hand, Ni/Ti/Ag metallization showed that it can prevent severe Al deformation due to the superior rigidity achieved by Ni metallization. The die-shear strength maintained almost the same value as its initial value, even after 500 cycles. In addition, a numerical simulation analysis determined that the Ag sinter joining structure on the DBA substrate with Ni/Ti/Ag metallization had high functionality in stress relaxation. This study provided a novel approach to design thermal shock stability Ag sinter joining for next-generation power modules in high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, J. Rebollo, A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29, 2155–2163 (2014). https://doi.org/10.1109/TPEL.2013.2268900

    Article  Google Scholar 

  2. H. Okumura, Present status and future prospect of widegap semiconductor high-power devices. Jpn. J. Appl. Phys. 45, 7565 (2006). https://doi.org/10.1143/JJAP.45.7565

    Article  CAS  Google Scholar 

  3. F. Roccaforte, F. Giannazzo, F. Iucolano, J. Eriksson, M.H. Weng, V. Raineri, Surface and interface issues in wide band gap semiconductor electronics. Appl. Surf. Sci. 256, 5727–5735 (2010). https://doi.org/10.1016/j.apsusc.2010.03.097

    Article  CAS  Google Scholar 

  4. F. Roccaforte, P. Fiorenza, G. Greco, R. Lo Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng. 187–188, 66–77 (2018). https://doi.org/10.1016/j.mee.2017.11.021

    Article  CAS  Google Scholar 

  5. F. Roccaforte, P. Fiorenza, G. Greco, M. Vivona, R. Lo Nigro, F. Giannazzo, A. Patti, M. Saggio, Recent advances on dielectrics technology for SiC and GaN power devices. Appl. Surf. Sci. 301, 9–18 (2014). https://doi.org/10.1016/j.apsusc.2014.01.063

    Article  CAS  Google Scholar 

  6. T. Ueda, Reliability issues in GaN and SiC power devices, in: 2014 IEEE International Reliability Physics Symposium (2014), pp. 1–6. https://doi.org/10.1109/IRPS.2014.6860629

  7. Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, I. Ohnuma, K. Ishida, Reliability of wire-bonding and solder joint for high temperature operation of power semiconductor device. Microelectron. Reliab. 47, 2147–2151 (2007). https://doi.org/10.1016/j.microrel.2007.07.102

    Article  CAS  Google Scholar 

  8. A. Pérez-Tomás, A. Fontserè, M. Placidi, M.R. Jennings, P.M. Gammon, Modelling the metal–semiconductor band structure in implanted ohmic contacts to GaN and SiC. Model. Simul. Mater. Sci. Eng. 21, 035004 (2013)

    Article  Google Scholar 

  9. H.S. Chin, K.Y. Cheong, A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices. Metall. Mater. Trans. B 41, 824–832 (2010). https://doi.org/10.1007/s11663-010-9365-5

    Article  CAS  Google Scholar 

  10. K.Y. Wong, W. Chen, X. Liu, C. Zhou, K.J. Chen, GaN smart power IC technology. Phys. Status Solidi Basic Res. 247, 1732–1734 (2010). https://doi.org/10.1002/pssb.200983453

    Article  CAS  Google Scholar 

  11. A.A. Bajwa, Y. Qin, R. Reiner, R. Quay, J. Wilde, Assembly and packaging technologies for higherature and high-power GaN devices. IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1402–1416 (2015). https://doi.org/10.1109/TCPMT.2015.2468595

    Article  CAS  Google Scholar 

  12. C. Choe, C. Chen, S. Noh, Thermal shock performance of DBA/AMB substrates plated by Ni and Ni-P layers for high-temperature applications of power device modules. Materials 11, 2394 (2018). https://doi.org/10.3390/ma11122394

    Article  CAS  Google Scholar 

  13. S.H. Chen, P.C. Chou, S. Cheng, Evaluation of thermal performance of packaged GaN HEMT cascode power switch by transient thermal testing. Appl. Therm. Eng. 98, 1003–1012 (2016). https://doi.org/10.1016/j.applthermaleng.2015.12.110

    Article  CAS  Google Scholar 

  14. R. Kisiel, Z. Szczepański, Die-attachment solutions for SiC power devices. Microelectron. Reliab. 49, 627–629 (2009). https://doi.org/10.1016/j.microrel.2009.03.009

    Article  CAS  Google Scholar 

  15. B. Hu, J. Ortiz Gonzalez, L. Ran, H. Ren, Z. Zeng, W. Lai, B. Gao, O. Alatise, H. Lu, C. Bailey, P. Mawby, Failure and reliability analysis of a SiC power module based on stress comparison to a Si device. IEEE Trans. Device Mater. Reliab. 17, 727–737 (2017). https://doi.org/10.1109/TDMR.2017.2766692

    Article  CAS  Google Scholar 

  16. K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43, 947–961 (2014). https://doi.org/10.1007/s11664-013-2967-3

    Article  CAS  Google Scholar 

  17. S. Menon, E. George, M. Osterman, M. Pecht, High lead solder (over 85%) solder in the electronics industry: RoHS exemptions and alternatives High lead solder ( over 85%) solder in the electronics industry : RoHS exemptions and alternatives. J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-2940-4

    Article  Google Scholar 

  18. E. George, M. Pecht, Microelectronics reliability RoHS compliance in safety and reliability critical electronics Cost reliability. Microelectron. Reliab. 65, 1–7 (2016). https://doi.org/10.1016/j.microrel.2016.07.150

    Article  Google Scholar 

  19. S. Sakamoto, S. Nagao, K. Suganuma, Thermal fatigue of Ag flake sintering die-attachment for Si / SiC power devices. J. Mater. Sci. 24, 2593–2601 (2013). https://doi.org/10.1007/s10854-013-1138-x

    Article  CAS  Google Scholar 

  20. C. Chen, K. Suganuma, Microstructure and mechanical properties of sintered Ag particles with flake and spherical shape from nano to micro size. Mater. Des. 162, 311–321 (2019). https://doi.org/10.1016/j.matdes.2018.11.062

    Article  CAS  Google Scholar 

  21. M.S. Kim, H. Nishikawa, Silver nanoporous sheet for solid-state die attach in power device packaging. Scr. Mater. 92, 43–46 (2014). https://doi.org/10.1016/j.scriptamat.2014.08.010

    Article  CAS  Google Scholar 

  22. Y. Yamada, Y. Takaku, Y. Yagi, Y. Nishibe, I. Ohnuma, Y. Sutou, R. Kainuma, K. Ishida, Pb-free high temperature solders for power device packaging. Microelectron. Reliab. 46, 1932–1937 (2006). https://doi.org/10.1016/j.microrel.2006.07.083

    Article  CAS  Google Scholar 

  23. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Low-temperature low-pressure die attach with hybrid silver particle paste. Microelectron. Reliab. 52, 375–380 (2012). https://doi.org/10.1016/j.microrel.2011.07.088

    Article  CAS  Google Scholar 

  24. C. Chen, K. Suganuma, T. Iwashige, K. Sugiura, High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates. J. Mater. Sci. Mater. Electron. 0, 0 (2017). https://doi.org/10.1007/s10854-017-8087-8

    Article  CAS  Google Scholar 

  25. R. Khazaka, L. Mendizabal, D. Henry, Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. J. Electron. Mater. 43, 2459–2466 (2014). https://doi.org/10.1007/s11664-014-3202-6

    Article  CAS  Google Scholar 

  26. J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scr. Mater. 66, 582–585 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.007

    Article  CAS  Google Scholar 

  27. Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, K. Suganuma, Low-temperature and pressureless sinter joining of Cu with micron / submicron Ag particle paste in air. J. Alloys Compd. 780, 435–442 (2019). https://doi.org/10.1016/j.jallcom.2018.11.251

    Article  CAS  Google Scholar 

  28. C. Pei, C. Chen, K. Suganuma, G. Fu, Thermal stability of silver paste sintering on coated copper and aluminum substrates. J. Electron. Mater. 47, 811–819 (2018). https://doi.org/10.1007/s11664-017-5857-2

    Article  CAS  Google Scholar 

  29. H. Zhang, C. Chen, S. Nagao, K. Suganuma, Thermal fatigue behavior of silicon-carbide-doped silver microflake sinter joints for die attachment in silicon/silicon carbide power devices. J. Electron. Mater. 46, 1055–1060 (2017). https://doi.org/10.1007/s11664-016-5069-1

    Article  CAS  Google Scholar 

  30. S. Kraft, A. Schletz, M. März, Reliability of silver sintering on DBC and DBA substrates for power electronic applications, in: 2012 7th International Conference on Integration of Power Electronics (CIPS) (2012), pp. 1–6. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6170661

  31. V.R. Manikam, K.Y. Cheong, Die attach materials for high temperature applications: a review, components, packag. manuf. technol. Packag. Manuf. Technol. IEEE Trans. 1, 457–478 (2011). https://doi.org/10.1109/TCPMT.2010.2100432

    Article  CAS  Google Scholar 

  32. S. Ri, M. Saka, Diffusion—fatigue interaction effect on hillock formation in aluminum thin films under thermal cycle testing. Mater. Lett. 79, 139–141 (2012). https://doi.org/10.1016/j.matlet.2012.03.109

    Article  CAS  Google Scholar 

  33. J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, J.W. Zhong, Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts. Acta Mater. 58, 3984–3994 (2010). https://doi.org/10.1016/j.actamat.2010.03.026

    Article  CAS  Google Scholar 

  34. R.D. Doherty, R.W. Cahn, Nucleation of new grains in cold worked metals. J. Less Common Met. 28, 279 (1972)

    Article  CAS  Google Scholar 

  35. M. Reihanian, R. Ebrahimi, N. Tsuji, M.M. Moshksar, Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP). Mater. Sci. Eng. A 473, 189–194 (2008). https://doi.org/10.1016/j.msea.2007.04.075

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the JST Advanced Carbon Technology Research and Development Program (ALCA) project “Development of a high frequency GaN power module package technology” (Grant No. JPMJAL1610). The author is thankful to the Network Joint Research Centre for Materials and Devices, Dynamic Alliance for Open Innovation Bridging Human, Environment, and Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuantong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Chen, C., Lee, SJ. et al. Strengthening of DBA substrate with Ni/Ti/Ag metallization for thermal fatigue-resistant Ag sinter joining in GaN power modules. J Mater Sci: Mater Electron 31, 3715–3726 (2020). https://doi.org/10.1007/s10854-020-02930-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02930-w

Navigation