Skip to main content
Log in

Highly bendable asymmetric resistive switching memory based on zinc oxide and magnetic iron oxide heterojunction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To block sneak current in a crossbar array, we propose asymmetric resistive switching device based on zinc oxide (ZnO) and magnetic iron oxide (Fe2O3) heterojunction, which has highly bendable performance with low power consumption. The ZnO/Fe2O3 heterojunction based active layer is fabricated on indium tin oxide (ITO). Polyethylene terephthalate (PET) substrate through spin coater and silver (Ag) is used as top electrode. Particularly, the active layer is protected by the magnetic force of Fe2O3 covered on ZnO, and hence, it can be bent under 1 mm diameter. The proposed memory is operated at low voltage of ± 1 V with reading voltage of ± 0.10204 V. In forward current, the fabricated device has high resistance state (HRS) of ~ 16.17 MΩ and low resistance state (LRS) of ~ 179.41 kΩ, respectively, at read voltage of + 0.10204 V, and Roff/Ron ratio is recorded as ~ 90.1. In reverse current, the HRS of ~ 15.69 MΩ and LRS of  ~ 9.23 MΩ are recorded at read voltage of − 0.10204 V, and Roff/Ron ratio is ~ 1.6976, which insure that the proposed asymmetric memory device helps to reduce sneak current problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.D. Meindl, Q. Chen, J.A. Davis, Limits on silicon nanoelectronics for terascale integration. Science 293(5537), 2044 (2001)

    Article  CAS  Google Scholar 

  2. C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, Y. Xie, Overcoming the challenges of crossbar resistive memory architectures, in 2015 IEEE 21st international symposium on high performance computer architecture (HPCA), 2015 7–11 Feb 2015, pp. 476–488

  3. L. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theor. 18(5), 507–519 (1971)

    Article  Google Scholar 

  4. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008)

    Article  CAS  Google Scholar 

  5. M.U. Khan, G. Hassan, M.A. Raza, J. Bae, Bipolar resistive switching device based on N, N′-bis(3-methylphenyl)-N, N′-diphenylbenzidine and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/poly(vinyl alcohol) bilayer stacked structure. Appl. Phys. A 124(10), 726 (2018)

    Article  Google Scholar 

  6. Yu-R Jeon, Y. Abbas, A.S. Sokolov, S. Kim, B. Ku, C. Choi, Study of in situ silver migration in amorphous boron nitride CBRAM device. ACS Appl. Mater. Interfaces 11(26), 23329–23336 (2019)

    Article  CAS  Google Scholar 

  7. Y. Abbas, S.R. Dugasani, M.T. Raza, Yu-R Jeon, S. Ha-Park, C. Choi, The observation of resistive switching characteristics using transparent and biocompatible Cu2+ -doped salmon DNA composite thin film. Nanotechnology 30(33), 335203 (2019)

    Article  CAS  Google Scholar 

  8. S. Ali, J. Bae, K.H. Choi, C.H. Lee, Y.H. Doh, S. Shin, N.P. Kobayashi, Organic non-volatile memory cell based on resistive elements through electro-hydrodynamic technique. Org. Electron. 17, 121–128 (2015)

    Article  CAS  Google Scholar 

  9. H.-J. Koo, J.-H. So, M.D. Dickey, O.D. Velev, Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater. 23(31), 3559–3564 (2011)

    Article  CAS  Google Scholar 

  10. M. Cassinerio, N. Ciocchini, D. Ielmini, Logic computation in phase change materials by threshold and memory switching. Adv. Mater. 25(41), 5975–5980 (2013)

    Article  CAS  Google Scholar 

  11. G. Hassan, M.U. Khan, J. Bae, Solution-processed flexible non-volatile resistive switching device based on poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)]: polyvinylpyrrolidone composite and its conduction mechanism. Appl. Phys. A 125(1), 18 (2018)

    Article  Google Scholar 

  12. G. Hassan, S. Ali, J. Bae, C.H. Lee, Flexible resistive switching device based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/poly(4-vinylphenol) (PVP) composite and methyl red heterojunction. Appl. Phys. A 123(4), 256 (2017)

    Article  Google Scholar 

  13. L. Zhu, J. Zhou, Z. Guo, Z. Sun, An overview of materials issues in resistive random access memory. J. Materiomics 1(4), 285–295 (2015)

    Article  Google Scholar 

  14. A.S. Sokolov, M. Ali, R. Riaz, Y. Abbas, M.J. Ko, C. Choi, Silver-adapted diffusive memristor based on organic nitrogen-doped graphene oxide quantum dots (N-GOQDs) for artificial biosynapse applications. Adv. Funct. Mater. 29, 1807504 (2019)

    Article  Google Scholar 

  15. S. Shin, K. Kim, S. Kang, Memristor applications for programmable analog ICs. IEEE Trans. Nanotechnol. 10(2), 266–274 (2011)

    Article  Google Scholar 

  16. M.A. Zidan, H.A.H. Fahmy, M.M. Hussain, K.N. Salama, Memristor-based memory: the sneak paths problem and solutions. Microelectron. J. 44(2), 176–183 (2013)

    Article  Google Scholar 

  17. Y.W. Choi, D. Kang, P.V. Pikhitsa, T. Lee, S.M. Kim, G. Lee, D. Tahk, M. Choi, Ultra-sensitive pressure sensor based on guided straight mechanical cracks. Sci. Rep. 7, 40116 (2017)

    Article  CAS  Google Scholar 

  18. N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, T. Someya, Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015)

    Article  CAS  Google Scholar 

  19. M.U. Khan, G. Hassan, M.A. Raza, J. Bae, N.P. Kobayashi, Schottky diode based resistive switching device based on ZnO/PEDOT:PSS heterojunction to reduce sneak current problem. J. Mater. Sci.: Mater. Electron. 30(5), 4607–4617 (2019)

    CAS  Google Scholar 

  20. I. Vourkas, G.C. Sirakoulis, Nano-crossbar memories comprising parallel/serial complementary memristive switches. BioNanoScience 4(2), 166–179 (2014)

    Article  Google Scholar 

  21. Z.-J. Liu, J.-Y. Gan, T.-R. Yew, ZnO-based one diode-one resistor device structure for crossbar memory applications. Appl. Phys. Lett. 100(15), 153503 (2012)

    Article  Google Scholar 

  22. S. Ali, J. Bae, C.H. Lee, N.P. Kobayashi, S. Shin, A. Ali, Resistive switching device with highly asymmetric current–voltage characteristics: a solution to backward sneak current in passive crossbar arrays. Nanotechnology 29(45), 455201 (2018)

    Article  Google Scholar 

  23. J. Bae, N.P. Kobayashi, Resistive switching device with highly-asymmetric current-voltage characteristics: its error analysis and new design parameter. Semicond. Sci. Technol. 34(2), 025007 (2019)

    Article  CAS  Google Scholar 

  24. K. Sekizawa, K. Oh-ishi, K. Kataoka, T. Arai, T.M. Suzuki, T. Morikawa, Stoichiometric water splitting using a p-type Fe2O3 based photocathode with the aid of a multi-heterojunction. J. Mater. Chem. A 5(14), 6483–6493 (2017)

    Article  CAS  Google Scholar 

  25. K. Woo, J. Hong, S. Choi, H.-W. Lee, J.-P. Ahn, C.S. Kim, S.W. Lee, Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem. Mater. 16(14), 2814–2818 (2004)

    Article  CAS  Google Scholar 

  26. K. Dukenbayev, I. Korolkov, D. Tishkevich, A. Kozlovskiy, S. Trukhanov, Y. Gorin, E. Shumskaya, E. Kaniukov, D. Vinnik, M. Zdorovets, M. Anisovich, A. Trukhanov, D. Tosi, C. Molardi, Fe3O4 nanoparticles for complex targeted delivery and boron neutron capture therapy. Nanomaterials. 9, 494 (2019)

    Article  CAS  Google Scholar 

  27. D.Z. Tulebayeva, A.L. Kozlovskiy, I.V. Korolkov, Y.G. Gorin, A.V. Kazantsev, L. Abylgazina, E.E. Shumskaya, E.Y. Kaniukov, M.V. Zdorovets, Modification of Fe3O4 nanoparticles with carboranes. Mater. Res. Exp. 5, 105011 (2018)

    Article  Google Scholar 

  28. T. Seadira, G. Sadanandam, T.A. Ntho, X. Lu, C.M. Masuku, M. Scurrell, Hydrogen production from glycerol reforming: conventional and green production. Rev. Chem. Eng. 34(5), 695–726 (2018)

    Article  CAS  Google Scholar 

  29. S.A. Jadhav, S.V. Patil, Facile synthesis of magnetic iron oxide nanoparticles and their characterization. Front. Mater. Sci. 8(2), 193–198 (2014)

    Article  Google Scholar 

  30. J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res., Part A 80A(2), 333–341 (2007)

    Article  CAS  Google Scholar 

  31. M.A. Hoque, M.R. Ahmed, G.T. Rahman, M.T. Rahman, M.A. Islam, M.A. Khan, M.K. Hossain, Fabrication and comparative study of magnetic Fe and α-Fe2O3 nanoparticles dispersed hybrid polymer (PVA + Chitosan) novel nanocomposite film. Results Phys. 10, 434–443 (2018)

    Article  Google Scholar 

  32. S.M.A. Naqvi, H. Soleimani, N. Yahya, K. Irshad, Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol–gel method. AIP Conf. Proc. 1621, 530–537 (2014)

    Article  CAS  Google Scholar 

  33. M.U. Khan, G. Hassan, J. Bae, Resistive switching device based on water and zinc oxide heterojunction for soft memory applications. J. Mater. Sci. 30, 18744–18752 (2019)

    CAS  Google Scholar 

  34. G. Hassan, J. Bae, M.U. Khan, S. Ali, Resistive switching device based on water and zinc oxide heterojunction for soft memory applications. Mater. Sci. Eng. B 246, 1–6 (2019)

    Article  CAS  Google Scholar 

  35. M.U. Khan, G. Hassan, J. Bae, Non-volatile resistive switching based on zirconium dioxide: poly (4-vinylphenol) nano-composite. Appl. Phys. A 125, 378 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2016R1A2B4015627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Bae.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.U., Hassan, G. & Bae, J. Highly bendable asymmetric resistive switching memory based on zinc oxide and magnetic iron oxide heterojunction. J Mater Sci: Mater Electron 31, 1105–1115 (2020). https://doi.org/10.1007/s10854-019-02622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02622-0

Navigation