Skip to main content
Log in

RETRACTED ARTICLE: Electrode buffer layers via networks of polythiophene/polyaniline bottlebrushes and carbon nanotubes in organic solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article was retracted on 28 September 2022

This article has been updated

Abstract

A new p-type electrode buffer layer (EBL) material was developed by the networks composed of multi-walled CNTs (MWCNTs) and poly(3-thiophene ethanol) (P3ThEt)-g-polyaniline (PANI) bottlebrush copolymers. The nanocomposites of CNT:P3ThEt-g-PANI were prepared in three different thicknesses (5, 15, and 25 nm) and employed as hole transport layer (HTL) in poly(3-hexylthiophene) (P3HT):phenyl-C71-butyric acid methyl ester (PC71BM) solar cells. A trade-off was detected between the sheet resistance and transmittance by elevating the HTL thickness for both pure CNT and CNT:P3ThEt-g-PANI nanocomposites. The CNT:P3ThEt-g-PANI thin films, in particular with an optimal thickness of 15 nm, were the turning points for equilibrating the film thickness, transmittance, surface roughness, and sheet resistance values. The smoothest thin films of CNT:P3ThEt-g-PANI with the thickness of 15 nm, the transmittance of 85–89%, and the sheet resistance of 5.6 × 104 Ω/sq reflected the best results of 12.85 mA/cm2, 60.7%, and 0.68 V. Hence, a maximum power conversion efficiency (PCE) of 5.30% was acquired among all solar cells fabricated in current work. After peaking at 15 nm, the second group of proper results was recognized in CNT:P3ThEt-g-PANI (25 nm)/P3HT:PC71BM photovoltaics (10.37 mA/cm2, 49.0%, and 0.62 V). The PCE of 3.15% for this system was even greater than the ideal performance (= 2.94%) detected in the pure CNT (15 nm)/P3HT:PC71BM solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6(9), 591–595 (2012)

    Article  Google Scholar 

  2. T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang, X. Gong, Inverted polymer solar cells with 84% efficiency by conjugated polyelectrolyte. Energy Environ. Sci. 5(8), 8208–8214 (2012)

    Article  CAS  Google Scholar 

  3. S. Liu, K. Zhang, J. Lu, J. Zhang, H.L. Yip, F. Huang, Y. Cao, High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer. J. Am. Chem. Soc. 135(41), 15326–15329 (2013)

    Article  CAS  Google Scholar 

  4. K. Li, Z. Li, K. Feng, X. Xu, L. Wang, Q. Peng, Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. J. Am. Chem. Soc. 135(36), 13549–13557 (2013)

    Article  CAS  Google Scholar 

  5. X. Guo, M. Zhang, W. Ma, L. Ye, S. Zhang, S. Liu, H. Ade, F. Huang, J. Hou, Enhanced photovoltaic performance by modulating surface composition in bulk heterojunction polymer solar cells based on PBDTTT-C-T/PC71BM. Adv. Mater. 26(24), 4043–4049 (2014)

    Article  CAS  Google Scholar 

  6. Y. Zhou, C. Fuentes-Hernandez, J.W. Shim, T.M. Khan, B. Kippelen, High performance polymeric charge recombination layer for organic tandem solar cells. Energy Environ. Sci. 5(12), 9827–9832 (2012)

    Article  CAS  Google Scholar 

  7. S.H. Liao, H.J. Jhuo, Y.S. Cheng, S.A. Chen, Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 25(34), 4766–4771 (2013)

    Article  CAS  Google Scholar 

  8. C.Y. Chang, L. Zuo, H.L. Yip, Y. Li, C.Z. Li, C.S. Hsu, Y.J. Cheng, H. Chen, A.K.Y. Jen, A versatile fluoro-containing low-bandgap polymer for efficient semitransparent and tandem polymer solar cells. Adv. Funct. Mater. 23(40), 5084–5090 (2013)

    Article  CAS  Google Scholar 

  9. Y. Sun, S.C. Chien, H.L. Yip, Y. Zhang, K.S. Chen, D.F. Zeigler, F.C. Chen, B. Lin, A.K.Y. Jen, Chemically doped and cross-linked hole-transporting materials as an efficient anode buffer layer for polymer solar cells. Chem. Mater. 23(22), 5006–5015 (2011)

    Article  CAS  Google Scholar 

  10. Y.M. Chang, R. Zhu, E. Richard, C.C. Chen, G. Li, Y. Yang, Electrostatic self-assembly conjugated polyelectrolyte-surfactant complex as an interlayer for high performance polymer solar cells. Adv. Funct. Mater. 22(15), 3284–3289 (2012)

    Article  CAS  Google Scholar 

  11. C. Gu, Y. Chen, Z. Zhang, S. Xue, S. Sun, K. Zhang, C. Zhong, H. Zhang, Y. Pan, Y. Lv, Y. Yang, Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics. Adv. Mater. 25(25), 3443–3448 (2013)

    Article  CAS  Google Scholar 

  12. H. Zhou, Y. Zhang, C.K. Mai, S.D. Collins, T.Q. Nguyen, G.C. Bazan, A.J. Heeger, Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells. Adv. Mater. 26(5), 780–785 (2014)

    Article  CAS  Google Scholar 

  13. C. Xu, J. Wang, Q. An, X. Ma, Z. Hu, J. Gao, J. Zhang, F. Zhang, Ternary small molecules organic photovoltaics exhibiting 12.84% efficiency. Nano Energy (2019). https://doi.org/10.1016/j.nanoen.2019.104119

    Article  Google Scholar 

  14. Z. Hu, F. Zhang, Q. An, M. Zhang, X. Ma, J. Wang, J. Zhang, J. Wang, Ternary nonfullerene polymer solar cells with a power conversion efficiency of 11.6% by inheriting the advantages of binary cells. ACS Energy Lett. 3(3), 555–561 (2018)

    Article  CAS  Google Scholar 

  15. X. Ma, M. Luo, W. Gao, J. Yuan, Q. An, M. Zhang, Z. Hu, J. Gao, J. Wang, Y. Zou, C. Yang, Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. J. Mater. Chem. A 7(13), 7843–7851 (2019)

    Article  CAS  Google Scholar 

  16. M. Zhang, Z. Xiao, W. Gao, Q. Liu, K. Jin, W. Wang, Y. Mi, Q. An, X. Ma, X. Liu, C. Yang, Over 13% efficiency ternary nonfullerene polymer solar cells with tilted up absorption edge by incorporating a medium bandgap acceptor. Adv. Energy Mater. 8(30), 1801968 (2018)

    Article  Google Scholar 

  17. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013)

    Article  Google Scholar 

  18. F. Zhang, M. Ceder, O. Inganäs, Enhancing the photovoltage of polymer solar cells by using a modified cathode. Adv. Mater. 19(14), 1835–1838 (2007)

    Article  CAS  Google Scholar 

  19. C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, P. Denk, Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80(7), 1288–1290 (2002)

    Article  CAS  Google Scholar 

  20. P. Peumans, S.R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C 60 photovoltaic cells. Appl. Phys. Lett. 79(1), 126–128 (2001)

    Article  CAS  Google Scholar 

  21. S.A. Carter, M. Angelopoulos, S. Karg, P.J. Brock, J.C. Scott, Polymeric anodes for improved polymer light-emitting diode performance. Appl. Phys. Lett. 70(16), 2067–2069 (1997)

    Article  CAS  Google Scholar 

  22. T.M. Brown, J.S. Kim, R.H. Friend, F. Cacialli, R. Daik, W.J. Feast, Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly (3, 4-ethylene dioxythiophene) hole injection layer. Appl. Phys. Lett. 75(12), 1679–1681 (1999)

    Article  CAS  Google Scholar 

  23. S. Khodabakhsh, B.M. Sanderson, J. Nelson, T.S. Jones, Using self-assembling dipole molecules to improve charge collection in molecular solar cells. Adv. Funct. Mater. 16(1), 95–100 (2006)

    Article  CAS  Google Scholar 

  24. H. Yan, P. Lee, N.R. Armstrong, A. Graham, G.A. Evmenenko, P. Dutta, T.J. Marks, High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. J. Am. Chem. Soc. 127(9), 3172–3183 (2005)

    Article  CAS  Google Scholar 

  25. J. Van De Lagemaat, T.M. Barnes, G. Rumbles, S.E. Shaheen, T.J. Coutts, C. Weeks, I. Levitsky, J. Peltola, P. Glatkowski, Organic solar cells with carbon nanotubes replacing In2O3: Sn as the transparent electrode. Appl. Phys. Lett. 88(23), 233503(1-5) (2006)

    Google Scholar 

  26. K. Norrman, M.V. Madsen, S.A. Gevorgyan, F.C. Krebs, Degradation patterns in water and oxygen of an inverted polymer solar cell. J. Am. Chem. Soc. 132(47), 16883–16892 (2010)

    Article  CAS  Google Scholar 

  27. A.W. Hains, T.J. Marks, High-efficiency hole extraction/electron-blocking layer to replace poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) in bulk-heterojunction polymer solar cells. Appl. Phys. Lett. 92(2), 023504(1–3) (2008)

    Article  Google Scholar 

  28. M. Kemerink, S. Timpanaro, M.M. De Kok, E.A. Meulenkamp, F.J. Touwslager, Three-dimensional inhomogeneities in PEDOT: PSS films. J. Phys. Chem. B 108(49), 18820–18825 (2004)

    Article  CAS  Google Scholar 

  29. L.M. Chen, Z. Xu, Z. Hong, Y. Yang, Interface investigation and engineering–achieving high performance polymer photovoltaic devices. J. Mater. Chem. 20(13), 2575–2598 (2010)

    Article  CAS  Google Scholar 

  30. M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89(14), 143517(1–3) (2006)

    Article  Google Scholar 

  31. S.K. Hau, H.L. Yip, N.S. Baek, J. Zou, K. O’Malley, A.K.Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 92(25), 225 (2008)

    Article  Google Scholar 

  32. J.W. Jung, J.U. Lee, W.H. Jo, High-efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer. J. Phys. Chem. C 114(1), 633–637 (2009)

    Article  Google Scholar 

  33. W.J. Bae, K.H. Kim, Y.H. Park, W.H. Jo, A novel water-soluble and self-doped conducting polyaniline graft copolymer. Chem. Commun. 22, 2768–2769 (2003)

    Article  Google Scholar 

  34. W.J. Bae, K.H. Kim, W.H. Jo, Y.H. Park, A water-soluble and self-doped conducting polypyrrole graft copolymer. Macromolecules 38(4), 1044–1047 (2005)

    Article  CAS  Google Scholar 

  35. W.J. Ke, G.H. Lin, C.P. Hsu, C.M. Chen, Y.S. Cheng, T.H. Jen, S.A. Chen, Solution processable self-doped polyaniline as hole transport layer for inverted polymer solar cells. J. Mater. Chem. 21(35), 13483–13489 (2011)

    Article  CAS  Google Scholar 

  36. W. Zhao, L. Ye, S. Zhang, B. Fan, M. Sun, J. Hou, Ultrathin polyaniline-based buffer layer for highly efficient polymer solar cells with wide applicability. Sci. Rep. 4, 6570 (2014)

    Article  CAS  Google Scholar 

  37. E. Kymakis, M.M. Stylianakis, G.D. Spyropoulos, E. Stratakis, E. Koudoumas, C. Fotakis, Spin coated carbon nanotubes as the hole transport layer in organic photovoltaics. Sol. Energy Mater. Sol. Cells 96, 298–301 (2012)

    Article  CAS  Google Scholar 

  38. R. Sarvari, M. Akbari-Alanjaraghi, B. Massoumi, Y. Beygi-Khosrowshahi, S. Agbolaghi, Conductive and biodegradable scaffolds based on a five-arm and functionalized star-like polyaniline–polycaprolactone copolymer with ad-glucose core. New J. Chem. 41(14), 6371–6384 (2017)

    Article  CAS  Google Scholar 

  39. B. Massoumi, R. Sarvari, S. Agbolaghi, Biodegradable and conductive hyperbranched terpolymers based on aliphatic polyester, poly (D, L-lactide), and polyaniline used as scaffold in tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 67(13), 808–821 (2018)

    Article  CAS  Google Scholar 

  40. M. Zhang, F. Zhang, Q. An, Q. Sun, W. Wang, X. Ma, J. Zhang, W. Tang, Nematic liquid crystal materials as a morphology regulator for ternary small molecule solar cells with power conversion efficiency exceeding 10%. J. Mater. Chem. A 5(7), 3589–3598 (2017)

    Article  CAS  Google Scholar 

  41. M. Zhang, F. Zhang, Q. An, Q. Sun, W. Wang, J. Zhang, W. Tang, Highly efficient ternary polymer solar cells by optimizing photon harvesting and charge carrier transport. Nano Energy 22, 241–254 (2016)

    Article  CAS  Google Scholar 

  42. Q. An, F. Zhang, Q. Sun, M. Zhang, J. Zhang, W. Tang, X. Yin, Z. Deng, Efficient organic ternary solar cells with the third component as energy acceptor. Nano Energy 26, 180–191 (2016)

    Article  CAS  Google Scholar 

  43. Z. Hu, Z. Wang, Q. An, F. Zhang, Semitransparent polymer solar cells with 12.37% efficiency and 18.6% average visible transmittance. Sci. Bull. (2019). https://doi.org/10.1016/j.scib.2019.09.016

    Article  Google Scholar 

Download references

Acknowledgments

We express our gratitude to the Payame Noor University as well as Azarbaijan Shahid Madani University for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bakhshali Massoumi or Samira Agbolaghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10854-022-09189-3"

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1150 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorkhishams, N., Massoumi, B., Saraei, M. et al. RETRACTED ARTICLE: Electrode buffer layers via networks of polythiophene/polyaniline bottlebrushes and carbon nanotubes in organic solar cells. J Mater Sci: Mater Electron 30, 21117–21125 (2019). https://doi.org/10.1007/s10854-019-02482-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02482-8

Navigation