Skip to main content
Log in

Enrichment of optical, magnetic and photocatalytic properties in PVP capped CdO/SnO2 nanocomposites synthesized by microwave irradiation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research study, the PVP capped CdO/SnO2, hybrid CdO/SnO2, and pure CdO nanocomposites were synthesized using simple chemical reaction and microwave irradiation method. The semantic approach studies the structural, morphological, elemental composition, optical, magnetic, thermal properties. XRD studies confirm that the particle size decreased in PVP capped CdO/SnO2 and CdO/SnO2 nanocomposites compared to pure CdO sample. Also, the existence of diffraction peaks of both CdO and SnO2 in fabricated hybrid CdO/SnO2 nanocomposite proves that the lattice combination of CdO and SnO2. The SEM and TEM images conclude that after doping of SnO2 and PVP with CdO nanoparticles, the particle structure transformed to rod-like morphology. FTIR spectrum of SnO2 and PVP: SnO2 doped CdO and their functional groups were studied. And also the presence of elemental composition analyzed by EDS spectrum. The UV absorption spectra results of SnO2 and PVP: SnO2 doped CdO states the red-shifted in the bandgap. An enhanced photocatalytic activity is observed in SnO2, PVP doped CdO nanocomposites. The thermal analysis curve of TGA and DTA confirms the thermal stability of synthesized nanocomposites. The CdO sample exhibits the ferromagnetic property. And Antiferromagnetism property is observed in SnO2, PVP doped CdO nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Rajesh, J.C. Kannan, T. Krishnakumarc, S.G. Leonardid, G. Neri, Sens. Actuators B 194, 96–104 (2014)

    CAS  Google Scholar 

  2. T. Ahmada, S. Khatoon, K. Coolahan, S.E. Lofland, J. Mater. Res. 28(9), 1245–1253 (2013)

    Google Scholar 

  3. N.E. Makori, I.A. Amatalo, P.M. Karimi, W.K. Njoroge, Int. J. Optoelectr. Eng. 4, 11–15 (2014)

    Google Scholar 

  4. Z. Zhao, D.L. Morel, C.S. Ferekides, Thin Solid Films 413, 203–211 (2002)

    CAS  Google Scholar 

  5. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Chem. Solids 112, 106–118 (2018)

    CAS  Google Scholar 

  6. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Mater. Res. Innov. 22, 1–9 (2018)

    Google Scholar 

  7. C.V. Reddy, B. Babu, J. Shim, J. Phys. Chem. Solids 112, 20–28 (2018)

    CAS  Google Scholar 

  8. B. Huang, H.L. Chu, M.C. Wan, W.S. Hwang, C. Liu, X. Zhao, J. Taiwan Inst. Chem. Eng. 80, 842–851 (2017)

    CAS  Google Scholar 

  9. A. Eskandari, F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Appl. Nanosci. 159, 261–268 (2019)

    Google Scholar 

  10. A.A. Dakhel, Thin Solid Films 518, 1712–1715 (2010)

    CAS  Google Scholar 

  11. Y. Zhu, R.J. Mendelsberg, J. Zhu, J. Han, A. Anders, Appl. Surf. Sci. 265, 738–744 (2013)

    CAS  Google Scholar 

  12. V.K. Gupta, A. Fakhri, S. Tahami, S. Agarwal, J. Colloid Interface Sci. 504, 164–170 (2017)

    CAS  Google Scholar 

  13. R.K. Gupta, Z. Serbet, F. Yakuphanoglu, J. Alloy. Compd. 515, 96–100 (2012)

    CAS  Google Scholar 

  14. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Mater. Sci. 29, 5459–5471 (2018)

    CAS  Google Scholar 

  15. P. Sun, X. Zhou, C. Wang, B. Wang, X. Xiumei, L. Geyu, Sens. Actuators B 190, 32–39 (2014)

    CAS  Google Scholar 

  16. M. Rakibuddin, R. Ananthakrishnan, Sol. Energy Mater. Sol. Cells 162, 62–71 (2017)

    CAS  Google Scholar 

  17. W.Z. Tawfik, M. Esmat, S.I. El-Dek, Appl. Nanosci. 7, 863–870 (2017)

    CAS  Google Scholar 

  18. A. Dakhel, Mater. Res. 19, 379–383 (2016)

    CAS  Google Scholar 

  19. K. Srinivas, M. Vithal, B. Sreedhar, M. Manivel Raja, P. Venugopal Reddy, J. Phys. Chem. C 113, 3543–3555 (2009)

    CAS  Google Scholar 

  20. X. Liu, J. Iqbal, W. Zhangben, B. He, Yu. Ronghai, J. Phys. Chem. C 114, 4790–4796 (2010)

    CAS  Google Scholar 

  21. N.M. Al-Hada, E. Saion, H.M. Kamari, M.H. Flaifel, A.H. Shaari, Z.A. Talib, N. Abdullahi, A.A. Baqer, A. Kharazmi, Mater. Sci. Semicond. Process. 53, 56–65 (2016)

    CAS  Google Scholar 

  22. H.A. Ahmada, N.M. Saidena, E. Saiona, R.S. Azisa, M.S. Mamat, M. Hashim, J. Magn. Magn. Mater. 428, 219–222 (2017)

    Google Scholar 

  23. N. Rajesh, J.C. Kannan, S.G. Leonardi, G. Neri, T. Krishnakumar, J. Alloys Compd. 607, 54–60 (2014)

    CAS  Google Scholar 

  24. K. Sirohi, S. Kumar, V. Singh, A. Vohra, Acta Metall. Sin. (Engl. Lett.) 31, 254–261 (2018)

    CAS  Google Scholar 

  25. G. Murugadoss, R. Jayavel, R. Thangamuthu, M.R. Kumar, J. Lumin. 170, 78–89 (2016)

    CAS  Google Scholar 

  26. N. Ahmad, S. Khan, M.M.N. Ansari, Mater. Res. Express 5(3), 035045 (2018)

    Google Scholar 

  27. S.A. Gowri, K.B. Gopinath, A. Arumugam, J. Photochem. Photobiol B 180, 166–174 (2018)

    CAS  Google Scholar 

  28. S.K. Kamilla, S. Basu, Bull. Mater. Sci. 25, 541–543 (2002)

    CAS  Google Scholar 

  29. T. Thangeeswari, J. Velmurugan, M. Priya, J. Mater. Sci. 24, 4817–4823 (2013)

    CAS  Google Scholar 

  30. T. Thangeeswari, M. Priya, J. Velmurugan, J. Mater. Sci. 26, 2436–2444 (2015)

    CAS  Google Scholar 

  31. D. Antosoly, S. Ilangovan, V.S. Nagarethinam, A.R. Balu, Surf. Eng. 33(11), 835–840 (2017)

    Google Scholar 

  32. L. Zhang, S. Ge, Y. Zuo, X. Zhou, Y. Xiao, J. Appl. Phys. 104, 123909 (2008)

    Google Scholar 

  33. R. Adhikari, A.K. Das, D. Karmakar, J. Ghatak, J. Magn. Magn. Mater. 322, 3631–3637 (2010)

    CAS  Google Scholar 

  34. G. Anandha babu, G. Ravi, T. Mahalingam, M. Navaneethan, M. Arivanandhan, Y. Hayakawa, J. Phys. Chem. C 118, 23335–23348 (2014)

    CAS  Google Scholar 

  35. G. Anandha babu, G. Ravi, Appl. Phys. A 122, 177 (2016)

    Google Scholar 

  36. G. Anandha babu, Y. Hayakawa, G. Ravi, Mater. Lett 149, 54 (2015)

    CAS  Google Scholar 

  37. B.S. Bomila, S. Suresh, S. Srinivasan, J. Mater. Sci. 29(21), 18449–18457 (2018)

    Google Scholar 

  38. E.F. AboZeid, I.A. Ibrahem, A.M. Ali, W.A.A. Mohamed, Results Phys. 12, 562–570 (2019)

    Google Scholar 

  39. V. Rajendran, R. Mekala, J. Alloys Compd. 741, 1055–1069 (2018)

    CAS  Google Scholar 

  40. G. Lalitha, R. Hemamalini, R. Saravanan, K. Ravichandran, F. Gracia, S. Agarwald, V.K. Gupta, J. Photochem. Photobiol B 173, 43–49 (2017)

    Google Scholar 

  41. N. Paul, D.D. Purkayastha, M.G. Krishna, Superlattices Microstruct. 129, 105–114 (2019)

    Google Scholar 

  42. S. Balamurugan, A.R. Balu, V. Narasimman, G. Selvan, K. Usharani, J. Srivind, M. Suganya, N. Manjula, C. Rajashree, V.S. Nagarethinam, Mater. Res. Express 6, 015022 (2019)

    Google Scholar 

  43. Y. Xu, M.A.A. Schoonen, Am. Miner. 85, 543–556 (2000)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Senthil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthil, S., Srinivasan, S., Thangeeswari, T. et al. Enrichment of optical, magnetic and photocatalytic properties in PVP capped CdO/SnO2 nanocomposites synthesized by microwave irradiation method. J Mater Sci: Mater Electron 30, 19841–19853 (2019). https://doi.org/10.1007/s10854-019-02351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02351-4

Navigation