Skip to main content
Log in

Impact of heat-treatment conditions on ferroelectric, ferromagnetic and magnetoelectric properties of multi-layered composite films of Ba0.9Ca0.1TiO3/CoFe2O4

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The magnetoelectric films of Ba0.9Ca0.1TiO3(BCT)/CoFe2O4(CFO) were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by the sol-gel and spin-coating method under three kinds of heat-treatment conditions. It is shown that the heat-treatment conditions have a great effect on the ferroelectric, ferromagnetic and magnetoelectric properties of the composite films. Among the composite films prepared under three kinds of heat-treatment conditions, the composite films prepared under the complete heat-treatment condition (CHC composite films) have the best ferroelectric, ferromagnetic and magnetoelectric properties. They possess largest value of αE (82 mV cm−1 Oe−1). The complete heat-treatment condition is the most appropriate heat-treatment condition for obtaining the best magnetoelectric properties. Ferroelectric phase and ferromagnetic phase can coexist without inter-diffusion at the interface in CHC composite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Cheng, B. Peng, Z. Hu, Z. Zhou, M. Liu, Recent development and status of magnetoelectric materials and devices. Phys. Lett. A 382, 3018–3025 (2018)

    Article  CAS  Google Scholar 

  2. Z. Tang, Z. Zhang, J. Chen, S. Zhao, Magnetoelectric effect of lead-free perovskite BiFeO3/Bi0.5(Na0.85K0.15)0.5TiO3 composite films. J. Alloys Compd. 696, 1–8 (2017)

    Article  CAS  Google Scholar 

  3. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

    Article  CAS  Google Scholar 

  4. C.M. Raghavan, H.J. Kim, J.W. Kim, S.S. Kim, Room temperature multiferroic properties of (Bi0.95La0.05)(Fe0.97Mn0.03)O3/NiFe2O4 double layered thin film. Mater. Res. Bull. 48, 4628–4632 (2013)

    Article  CAS  Google Scholar 

  5. K. Liang, L. Sun, D. Cao, C. Zhang, L. Luo, J. Li, J. Su, C. Lu, Study on dielectric, ferroelectric, and magnetic properties of 0.5LaFe0.5Co0.5O3–Bi4Ti3O12 multiferroic thin films. IEEE Trans. Magn. 54, 2502305 (2018)

    Google Scholar 

  6. Z. Tang, Z. Liu, J. Ma, J. Fan, M. Zhong, X.G. Tang, S.G. Lu, M. Tang, J. Gao, The enhanced magnetoelectric effect and piezoelectric properties in the lead-free Bi3.15Nd0.85Ti3O12/La0.7Ca0.3MnO3 nano-multilayers composite thin films. J. Alloys Compd. 777, 485–491 (2019)

    Article  CAS  Google Scholar 

  7. R.R. Awasthi, K. Asokan, B. Das, Effect of molar concentration on structural, magnetic domain and optical properties of BiFeO3 thin films. Appl. Phys. A 125, 338 (2019)

    Article  Google Scholar 

  8. J. Zhang, W. Zhu, D. Chen, H. Qu, P. Zhou, M. Popovd, L. Jiang, L. Cao, G. Srinivasan, Magnetoelectric effects and power conversion efficiencies in gyrators with compositionally-graded ferrites and piezoelectrics. J. Magn. Magn. Mater. 473, 131–135 (2019)

    Article  CAS  Google Scholar 

  9. N.A. Spaldin, Multiferroics: past, present, and future. Mater. Res. Bull. 42, 385–390 (2017)

    Article  Google Scholar 

  10. C. Song, B. Cui, F. Li, X. Zhou, F. Pan, Recent progress in voltage control of magnetism: materials, mechanisms, and performance. Prog. Mater Sci. 87, 33–82 (2017)

    Article  Google Scholar 

  11. T. Li, F. Zhang, K. Li, H. Wang, Z. Tang, Evolution of the charge- and strain-mediated magnetoelectric coupling effect in the La0.7Sr0.3MnO3/BaTiO3 bilayer. J. Alloys Compd. 638, 344–348 (2015)

    Article  CAS  Google Scholar 

  12. D.V. Saveliev, Y.K. Fetisov, D.V. Chashin, L.Y. Fetisov, D.A. Burdin, N.A. Ekonomov, Magnetoelectric effects in a layered ferromagnet-electrostrictor heterostructure. J. Magn. Magn. Mater. 466, 219–224 (2018)

    Article  CAS  Google Scholar 

  13. J. Rani, V.K. Kushwaha, J. Kolte, C.V. Tomy, Strong magnetoelectric effect in pulse laser deposited [Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3]/CoFe2O4 bilayer thin film. J. Am. Ceram. Soc. 101, 5651–5658 (2018)

    Article  CAS  Google Scholar 

  14. P. Praveen, V.R. Monaji, S.D. Kumar, V. Subramanian, D. Dasa, Enhanced magnetoelectric response from lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-CoFe2O4 laminate and particulate composites. Ceram. Int. 44, 4298–4306 (2018)

    Article  Google Scholar 

  15. T. Li, D. Ma, K. Li, Z. Hu, Self-biased magnetoelectric coupling effect in the layered La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 multiferroic heterostructure. J. Alloys Compd. 747, 558–562 (2018)

    Article  CAS  Google Scholar 

  16. M. Naveed-Ul-Haq, S. Webers, H. Trivedi, S. Salamon, H. Wende, M. Usman, A. Mumtaz, V.V. Shvartsman, D.C. Lupascu, Effect of substrate orientation on local magnetoelectric coupling in bi-layered multiferroic thin films. Nanoscale 10, 20618–20627 (2018)

    Article  CAS  Google Scholar 

  17. Y. Dai, Q. Gao, C. Cui, L. Yangb, C. Li, X. Li, Role of ferroelectric/ferromagnetic layers on the ferroelectric properties of magnetoelectric composite films derived by chemical solution deposition. Mater. Res. Bull. 99, 424–428 (2018)

    Article  CAS  Google Scholar 

  18. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  CAS  Google Scholar 

  19. S. Vivek, P. Geetha, V. Saravanan, A.S. Kumar, C.S. Chitra Lekha, K. Sudheendran, M.R. Anantharaman, S.S. Nair, Magnetoelectric coupling in strained strontium titanate and Metglas based magnetoelectric trilayer. J. Alloys Compd. 789, 1056–1061 (2019)

    Article  CAS  Google Scholar 

  20. D.K. Pradhan, S. Kumari, R.K. Vasudevan, E. Strelcov, V.S. Puli, D.K. Pradhan, A. Kumar, J.M. Gregg, A.K. Pradhan, S.V. Kalinin, R.S. Katiyar, Exploring the magnetoelectric coupling at the composite interfaces of FE/FM/FE heterostructures. Sci. Rep. 8, 17381 (2018)

    Article  Google Scholar 

  21. T. Li, H. Wang, Z. Hu, K. Li, Temperature dependence of magnetoelectric coupling in La0.7Sr0.3MnO3/BaTiO3 layered heterostructure with various volume fraction. Thin Solid Films 616, 1–5 (2016)

    Article  CAS  Google Scholar 

  22. Z. Duan, Z. Yang, Y. Cui, L. Ma, L. Li, G. Zhao, T. Li, Growth and characterization of Bi3.15Nd0.85Ti2.95Hf0.05O12/La0.67Sr0.33MnO3 composite film with strong magnetoelectric effect by chemical solution deposition under moderate crystallization temperature. J. Alloys Compd. 754, 190–198 (2018)

    Article  CAS  Google Scholar 

  23. Z. Duan, Y. Cui, G. Zhao, X. Li, B. Peng, C. Han, Intergration of c-axis oriented Bi3.15Nd0.85Ti2.95Hf0.05O12/La0.67Sr0.33MnO3 ferromagnetic-ferroelectric composite film on Si substrate. Sci. Rep. 7, 11341 (2017)

    Article  Google Scholar 

  24. F. Yan, G. Chen, L. Lu, P. Finkel, J.E. Spanier, Local probing of magnetoelectric coupling and magnetoelastic control of switching in BiFeO3–CoFe2O4 thin-film nanocomposite. Appl. Phys. Lett. 103, 042906 (2013)

    Article  Google Scholar 

  25. J. Rani, K.L. Yadav, S. Prakash, Enhanced magnetodielectric effect and optical property of lead-free multiferroic (1 − x)(Bi0.5Na0.5)TiO3/xCoFe2O4 composites. Mater. Chem. Phys. 147, 1183–1190 (2014)

    Article  CAS  Google Scholar 

  26. C. Bhardwaj, B.S.S. Daniel, D. Kaur, Pulsed laser deposition and characterization of highly tunable (1 − x)Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3 thin films grown on LaNiO3/Si substrate. J. Phys. Chem. Solids 74, 94–100 (2013)

    Article  CAS  Google Scholar 

  27. T. Lia, H. Wang, D. Ma, K. Li, Z. Hu, Influence of clamping effect in BaTiO3 film on the magnetoelectric behavior of layered multiferroic heterostructures. Mater. Res. Bull. 115, 116–120 (2019)

    Article  Google Scholar 

  28. K.C. Verma, M. Singh, R.K. Kotnala, N. Goyal, Magnetic field control of polarization/capacitance/voltage/resistance through lattice strain in BaTiO3–CoFe2O4 multiferroic nanocomposite. J. Magn. Magn. Mater. 469, 483–493 (2019)

    Article  CAS  Google Scholar 

  29. Q. Dai, K. Guo, C. Deng, Enhanced Curie temperature and magnetoelectric effect in BaTiO3-based piezoelectrics and NiFe2O4 composite thin films deposited via pulsed laser deposition. Mod. Phys. Lett. B 33, 1950130 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (No. 51472069). The authors would like to thank Prof. Xiaoguang Li, Department of Physics, University of Science and Technology of China, for the assistance in the magnetoelectric measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Shi or Yudong Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Xu, Y., Zhang, Q. et al. Impact of heat-treatment conditions on ferroelectric, ferromagnetic and magnetoelectric properties of multi-layered composite films of Ba0.9Ca0.1TiO3/CoFe2O4. J Mater Sci: Mater Electron 30, 19343–19352 (2019). https://doi.org/10.1007/s10854-019-02296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02296-8

Navigation