Skip to main content
Log in

Higher ferromagnetic resonance frequency in NiFe/FeMn film obtained by flash annealing in reversing field

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The unsaturated magnetization reversal by pulsed current annealing was investigated in exchange biased NiFe(15 nm)/FeMn(10 nm) bilayer. The magnetization reversal was conducted by energizing and thus heating the film under an external applied magnetic field (\(H_{\text{a}}\)) with the direction opposite to the deposition field (\(H_{\text{d}}\)). The static and dynamic magnetic properties of the films before and after rapid annealing were characterized using vibrating sample magnetometer, anisotropic magnetoresistance (AMR) and vector network analyzer measurements. When the samples were annealed at 40 and 45 V condenser voltages, greater values of rotational anisotropy \((H_{\text{rot}} )\), ferromagnetic resonance frequency (\(f_{\text{r}}\)) and smaller values of exchange bias field \((H_{\text{e}} )\), exchange bias field in AMR measurement (\(H_{\text{e}}^{\text{MR}}\)), and magnetoresistance in the samples were obtained, which is attributed to the unsaturated reversed magnetization in reversing magnetic field. A suggested model for which the scattered magnetization of magnetic moment results in additional unstable antiferromagnetic spins in the film was proposed to explain this interesting phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Hu, X. Wang, T. Nan, Z. Zhou, B. Ma, X. Chen, J.G. Jones, B.M. Howe, G.J. Brown, Y. Gao, H. Lin, Z. Wang, R. Guo, S. Chen, X. Shi, W. Shi, H. Sun, D. Budil, M. Liu, N.X. Sun, Sci. Rep. 6, 32408 (2016)

    Article  CAS  Google Scholar 

  2. N.O. Birge, Philos. Trans. R. Soc. A 376(2125), 20150150 (2018)

    Article  Google Scholar 

  3. K. Yekeh Yazdandoost, I. Laakso, Prog. Electronmagn. Res. 72, 61 (2018)

    Article  Google Scholar 

  4. J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192(2), 203–232 (1999)

    Article  Google Scholar 

  5. A.M. Kane, R.V. Chopdekar, A. Scholl, E. Arenholz, A. Mehta, Y. Takamura, Phys. Rev. Mater. 3(1), 014413 (2019)

    Article  CAS  Google Scholar 

  6. Y. Wang, B. Dai, B. Huang, Y. Ren, J. Xu, Z. Wang, S. Tan, J. Ni, J. Mater. Sci. 27, 3778 (2016)

    CAS  Google Scholar 

  7. Z. Wang, S.J. Tan, J. Li, B. Dai, Y.K. Zou, Chin. Phys. B 27(8), 087504 (2018)

    Article  Google Scholar 

  8. H. Saglam, J.C. Rojas-Sanchez, S. Petit, M. Hehn, W. Zhang, J.E. Pearson, S. Mangin, A. Hoffmann, Phys. Rev. B 98(9), 094407 (2018)

    Article  CAS  Google Scholar 

  9. G. Chai, N. Phuoc, C.K. Ong, Sci. Rep. 2, 832 (2012)

    Article  Google Scholar 

  10. J. Li, Y. Wang, B. Dai, Y. Ren, Z. Wang, S. Tan, J. Ni, J. Mater. Sci. 28(20), 15313 (2017)

    CAS  Google Scholar 

  11. T. Maity, S. Goswami, D. Bhattacharya, S. Roy, Phys. Rev. Lett. 110(10), 107201 (2013)

    Article  Google Scholar 

  12. C. Aroca, I. Tanarro, P. Sanchez, E. Lopez, M. Vazquez, M.C. Sanchez, Phys. Rev. B 42, 8086 (1990)

    Article  CAS  Google Scholar 

  13. S.D. Choi, S.W. Kim, D.H. Jin, M.S. Lee, H.W. Joo, K.A. Lee, S.S. Lee, D.G. Hwang, Eur. Phys. J. B 45, 219–222 (2005)

    Article  CAS  Google Scholar 

  14. I. Berthold, M. Müller, S. Klötzer, R. Ebert, S. Thomas, P. Matthes, M. Albrecht, H. Exner, Appl. Surf. Sci. 302, 159 (2014)

    Article  CAS  Google Scholar 

  15. Y.Q. Zhang, X.Z. Ruan, B. Liu, Z.Y. Xu, Q.Y. Xu, J.D. Shen, Q. Li, J. Wang, B. You, H.Q. Tu, Y. Gao, W. Zhang, Y.B. Xu, J. Du, Appl. Surf. Sci. 367, 418 (2016)

    Article  CAS  Google Scholar 

  16. D. Yang, H. Conrade, Intermetallics 9, 943 (2001)

    Article  CAS  Google Scholar 

  17. H. Conrad, N. Karam, S. Mannan, Scripta Metall. 18(3), 275 (1984)

    Article  CAS  Google Scholar 

  18. Z. Qi, C. Daniels, S. Hong, Y. Park, V. Meunier, M. Drndić, A. Johnson, ACS Nano 9(4), 3510 (2015)

    Article  CAS  Google Scholar 

  19. J. McCord, R. Mattheis, D. Elefant, Phys. Rev. B 70, 094420 (2004)

    Article  Google Scholar 

  20. J. McCord, R. Kaltofen, T. Gemming, R. Huhne, L. Schultz, Phys. Rev. B 75, 134418 (2007)

    Article  Google Scholar 

  21. M.F. Toney, C. Tsang, J.K. Howard, J. Appl. Phys. 70(10), 6227–6229 (1991)

    Article  CAS  Google Scholar 

  22. L.H. Allen, G. Ramanath, S.L. Lai, Z. Ma, S. Lee, D.D.J. Allman, K.P. Fuchs, Appl. Phys. Lett. 64(4), 417–419 (1994)

    Article  CAS  Google Scholar 

  23. J.W. Wei, J.B. Wang, Q.F. Liu, X.Y. Li, D.R. Cao, X.J. Sun, Rev. Sci. Instrum. 85, 054705 (2014)

    Article  Google Scholar 

  24. M. Gruyters, Phys. Rev. B 73(1), 014404 (2006)

    Article  Google Scholar 

  25. S. Hertel, F. Kisslinger, J. Jobst, D. Waldmann, M. Krieger, H.B. Webera, Appl. Phys. Lett. 98, 212109 (2011)

    Article  Google Scholar 

  26. L. Landau, E. Lifshits, Phys. Z. Sowjetunion 8, 153 (1935)

    Google Scholar 

  27. T.L. Gilbert, I.E.E.E. Trans, Magn. 40, 3443 (2004)

    Article  CAS  Google Scholar 

  28. N.N. Phuoc, L.T. Hung, C.K. Ong, J. Alloy. Compd. 506, 504 (2010)

    Article  Google Scholar 

  29. N. Phuoca, S.L. Lim, F. Xu, Y.G. Ma, C.K. Ong, J. Appl. Phys. 104, 093708 (2008)

    Article  Google Scholar 

  30. J. Holanda, D.S. Maior, A. Azevedo, S.M. Rezende, J. Magn. Magn. Mater. 432, 507 (2017)

    Article  CAS  Google Scholar 

  31. T. Gredig, I.N. Krivorotov, E.D. Dahlberg, J. Appl. Phys. 91(10), 7760 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education for carrying out the Vector Network Analyzer measurements. This work was supported by Young Science and Technology Innovation Team of Sichuan Province (No. 2017TD0020) and the Sichuan Science and Technology Program of China (No. 2018SZ0282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Dai, B., Ren, Y. et al. Higher ferromagnetic resonance frequency in NiFe/FeMn film obtained by flash annealing in reversing field. J Mater Sci: Mater Electron 30, 18328–18335 (2019). https://doi.org/10.1007/s10854-019-02186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02186-z

Navigation