Skip to main content

Advertisement

Log in

Energy-storage properties of Sr-doped PLZST bulk ceramics and thick films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric and energy-storage properties of (Pb0.97−xSrxLa0.02)(Zr0.675Sn0.285Ti0.04)O3 (x = 0, 0.005, 0.01, 0.015) bulk ceramics and thick films were investigated. All samples are orthorhombic perovskite antiferroelectric phase and have dielectric temperature relaxation property. Sr-dopant can improve the stability of the antiferroelectric phase and increase the phase transition field, but cause a decrease in dielectric constant. Thick films have a higher maximum tolerable external electric field strength than bulk ceramics. Compared with undoped thick film, the forward phase transition field and the backward phase transition field of the 1.5% doped thick film increased by 32% and 27%, respectively. The maximum polarization of the 1.5% doped thick film is decreased by 17%. The largest recoverable energy-storage density was obtained in thick film with 1% Sr doping. The largest recoverable energy-storage density is 2.77 J/cm3, which is 9.4% higher than the undoped thick film ceramic and 477% higher than the bulk ceramic with 1% Sr doping. The high energy storage density indicates that the obtained thick film is promising for pulsed power capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.G. Wisken, F. Podeyn, H.G.G. Weise, High energy density capacitors for ETC gun applications. IEEE Trans. Magn. 37(1), 332–335 (2001)

    Article  Google Scholar 

  2. H.G. Wisken, T.H.G.G. Weise, Critical components for high energy density capacitor modules. IEEE Trans. Magn. 39(1), 446–450 (2003)

    Article  Google Scholar 

  3. H.G. Wisken, T.H.G.G. Weise, Capacitive pulsed power supply systems for ETC guns. IEEE Trans. Magn. 39(1), 501–504 (2003)

    Article  Google Scholar 

  4. X.H. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 03(1), 1330001 (2013)

    Article  Google Scholar 

  5. Q. Li, K. Han, M.R. Gadinski, G. Zhang, Q. Wang, High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26(36), 6244–6249 (2014)

    Article  CAS  Google Scholar 

  6. K. Han, Q. Li, C. Chanthad, A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density. Adv. Func. Mater. 25(23), 3505–3513 (2015)

    Article  CAS  Google Scholar 

  7. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Structure and magnetic properties of BaFe11.9In0.1O19 hexaferrite in a wide temperature range. J. Alloys Compd. 689, 383–393 (2016)

    Article  CAS  Google Scholar 

  8. M. Wei, J.H. Zhang, K.T. Wu, H.W. Chen, C.R. Yang, Effect of BiNbO4 doping on the dielectric properties of BaTiO3 ceramics. Int. J. Appl. Ceram. Technol. 15(1), 197–202 (2017)

    Article  Google Scholar 

  9. V.A. Turchenko, S.V. Trukhanov, A.M. Balagurov, V.G. Kostishyn, A.V. Trukhanov, L.V. Panina, E.L. Trukhanova, Features of crystal structure and dual ferroic properties of BaFe12-xMexO19 (Me = In3 + and Ga3 + ; x = 0.1-1.2). J. Magn. Magn. Mater. 464, 139–147 (2018)

    Article  CAS  Google Scholar 

  10. X.X. Dong, H.W. Chen, M. Wei, K.T. Wu, J.H. Zhang, Structure, dielectric and energy storage properties of BaTiO3, ceramics doped with YNbO4. J. Alloys Compd. 477, 721–727 (2018)

    Article  Google Scholar 

  11. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V. An, D.I. Trukhanov, E.L. Tishkevich, T.I. Trukhanova, D.V. Zubar, V.G. Karpinsky, L.V. Kostishyn, D.A. Panina, S.A. Vinnik, E.A. Gudkova, P. Trofimov, A. Thakur, Y.Yang Thakur, Magnetic and dipole moments in indium doped barium hexaferrites. J. Magn. Magn. Mater. 457, 83–96 (2018)

    Article  CAS  Google Scholar 

  12. H. Yu, J.H. Zhang, M. Wei, J.P. Huang, H.W. Chen, C.R. Yang, Enhanced energy storage density performance in (Pb0.97La0.02)(Zr0.5Sn0.44Ti0.06)–BiYO3 anti-ferroelectric composite ceramics. J. Mater. Sci.: Mater. Electron. 28(1), 832–838 (2017)

    CAS  Google Scholar 

  13. E. Sawaguchi, H. Maniwa, S. Hoshino, Antiferroelectric structure of lead zirconate. Phys. Rev. 83(5), 1078 (1951)

    Article  CAS  Google Scholar 

  14. K. Markowski, S.E. Park, S. Yoshikawa, L.E. Cross, Effect of compositional variations in the lead lanthanum zirconate stannate titanate system on electrical properties. J. Am. Ceram. Soc. 79(12), 3297–3304 (1996)

    Article  CAS  Google Scholar 

  15. R. Xu, Z. Xu, Y.J. Feng, J.J. Tian, D. Huang, Energy storage and release properties of Sr-doped (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. Ceram. Int. 42(11), 12875–12879 (2016)

    Article  CAS  Google Scholar 

  16. Z. Liu, Y. Bai, X.F. Chen, X.L. Dong, H.C. Nie, F. Cao, G.S. Wang, Linear composition-dependent phase transition behavior and energy storage performance of tetragonal PLZST antiferroelectric ceramics. J. Alloys Compd. 691, 721–725 (2016)

    Article  Google Scholar 

  17. R. Xu, Q.S. Zhu, J.J. Tian, Y.J. Feng, Z. Xu, Effect of Ba-dopant on dielectric and energy storage properties of PLZST antiferroelectric ceramics. Ceram. Int. 42(2), 2481–2485 (2017)

    Article  Google Scholar 

  18. W. Pan, Q. Zhang, A. Bhalla, L.E. Cross, Field-forced antiferroelectric-to-ferroelectric switching in modified lead zirconate titanate stannate ceramics. Cheminform 72(4), 571–578 (2010)

    Google Scholar 

  19. D. Berlincourt, Transducers using forced transitions between ferroelectric and antiferroelectric states. IEEE Trans. Son. Ultrason. 13(4), 116–124 (1966)

    Article  CAS  Google Scholar 

  20. J.F. Li, D.D. Viehland, T. Tani, C.D.E. Lakeman, D.A. Payne, Piezoelectric properties of sol-gel-derived ferroelectric and antiferroelectric thin layers. J. Appl. Phys. 75(1), 442–448 (1994)

    Article  CAS  Google Scholar 

  21. I. Kanno, S. Hayashi, M. Kitagawa, R. Takayama, T. Hirao, Antiferroelectric PbZrO3 thin films prepared by multi-ion-beam sputtering. Appl. Phys. Lett. 66(2), 145–147 (1995)

    Article  CAS  Google Scholar 

  22. L.M. Chen, Y. Li, Q.W. Zhang, X.H. Hao, Electrical properties and energy-storage performance of (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric thick films prepared by tape-casing method. Ceram. Int. 42(11), 12537–12542 (2016)

    Article  CAS  Google Scholar 

  23. L.J. Zhou, A. Zimmermann, Y.P. Zeng, F. Aldinger, Effects of PbO content on the sintering behavior, microstructure, and properties of La-doped PZST antiferroelectric ceramics. J. Mater. Sci.: Mater. Electron. 15(3), 145–151 (2004)

    CAS  Google Scholar 

  24. M. Wei, J.H. Zhang, M.M. Zhang, Z.Y. Yao, H.W. Chen, C.R. Yang, Relaxor behavior of BaTiO3-BaYO3 perovskite materials for high energy density capacitors. Ceram. Int. 43(6), 4768–4774 (2017)

    Article  CAS  Google Scholar 

  25. M. Wei, J.H. Zhang, K.T. Wu, H.W. Chen, C.R. Yang, Effect of BaTiO3 (M = Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics. Ceram. Int. 43(13), 9593–9599 (2017)

    Article  CAS  Google Scholar 

  26. L.M. Chen, Y. Li, Q.W. Zhang, X.H. Hao, Electrical properties and energy-storage performance of (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)3 antiferroelectric thick films prepared by tape-casing method. Ceram. Int. 42(11), 12537–12542 (2016)

    Article  CAS  Google Scholar 

  27. Q.F. Zhang, H.F. Tong, J. Chen, Y.M. Lu, T.Q. Yang, X. Yao, Y.B. He, High recoverable energy density over a wide temperature range in Sr modified (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics with an orthorhombic phase. Appl. Phys. Lett. 109(26), 262901 (2016)

    Article  Google Scholar 

  28. V.A. Isupov, Some problems of diffuse ferroelectric phase transitions. Ferroelectrics 90(1), 113–118 (1989)

    Article  Google Scholar 

  29. L.E. Cross, W. Heywang, K. Lubitz, W. Wersing, in Piezoelectricity, ed. by H. Walter, L. Karl, W. Wolfram (Springer, New York, 1973), p. 131

    Google Scholar 

  30. Q.F. Zhang, T.Q. Yang, Y.Y. Zhang, X. Yao, Phase transition and electric field induced strain properties in Sm modified lead zirconate stannate titanate based antiferroelectric ceramics. J. Appl. Phys. 113(24), 244103 (2013)

    Article  Google Scholar 

Download references

AcknowledgementS

This work was supported by the Innovation Foundation of Collaboration Innovation Center of Electronic Materials and Devices (Grant No. ICEM2015-4002), the National Natural Science Foundation of China (Grant No. 51602037) and the China Postdoctoral Science Foundation (Grant No. 2018M633343).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Chen or Jihua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Chen, H., Deng, B. et al. Energy-storage properties of Sr-doped PLZST bulk ceramics and thick films. J Mater Sci: Mater Electron 30, 17916–17922 (2019). https://doi.org/10.1007/s10854-019-02144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02144-9

Navigation