Skip to main content
Log in

Synthesis, structural, microstructural and electromagnetic properties of (1 − x) [Ni0.25Cu0.15Zn0.60Fe2O4] + (x) [Na1/3Ca1/3Bi1/3Cu3Ti4O12] composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, lead-free (1 − x) [Ni0.25Cu0.15Zn0.60Fe2O4] (NCZFO) + (x) [Na1/3Ca1/3Bi1/3Cu3Ti4O12] (NCBCTO) (0.0 ≤ x ≤ 1.0) were synthesized via solid state reaction route and sintered at 1000 and 1050 °C. The phase compositions and surface morphology of the composites were investigated using standard techniques. XRD and FTIR analyses confirmed the successful formation of the composites without any impurity phases. The SEM analysis disclosed that the average grain size was decreased as the NCBCTO content increases at both sintering temperatures. The exhibition of the dielectric https://www.sciencedirect.com/topics/materials-science/permittivity dispersion is ascribed to the Maxwell–Wagner interfacial polarization. At 1050 °C, the x = 0.05 composite exhibits giant dielectric constant which is attributed to the increased density. AC conductivity study ascertains that the conduction mechanism is mainly accounted for the small polaron hopping. Complex impedance and electric modulus studies ascertain the non-Debye type relaxation mechanism. The permeability increases up to certain proportion of NCBCTO and deteriorates with further increase in NCBCTO content at both sintering temperatures. The increment is accounted for the improved grain size and density while the decrement is attributed to the magnetic dilution caused by the excess amount of NCBCTO. The Q-factor increases up to certain proportion of NCBCTO and decreases with further increase in NCBCTO. The increment in Q-factor is a consequence of the reduced resistivity at the grain boundaries while the deterioration is ascribed to the increased resistivity. Therefore, it can be said that addition of proper concentration of NCBCTO to NCZFO can prove the electromagnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T.P. Gavrilova, J.A. Deeva, I.V. Yatsyk, A.R. Yagfarova, I.F. Gilmutdinov, N.M. Lyadov, F.O. Milovich, T.I. Chupakhina, R.M. Eremina, Physica B 536, 303–309 (2018)

    Article  Google Scholar 

  2. T.P. Gavrilova, R.M. Eremina, I.V. Yatsyk, I.F. Gilmutdinov, A.G. Kiiamov, N.M. Lyadov, YuV Kabirov, J. Alloys Compd. 714, 213–224 (2017)

    Article  Google Scholar 

  3. A.V. Petrov, J. Macutkevic, J. Banys, N.A. Kalanda, L.I. Gurskii, A.V. Solnyshkin, A.O. Plyushch, P.P. Kuzhir, N.A. Sobolev, Mod. Electron. Mater. 3, 26–31 (2017)

    Article  Google Scholar 

  4. H. Yang, H. Wang, L. He, L. Shui, X. Yao, J. Appl. Phys. 108, 074105 (2010)

    Article  Google Scholar 

  5. J.V. Vidal, A.A. Timopheev, A.L. Kholkin, N.A. Sobolev, in Engineering the Magnetoelectric Response in Piezocrystal-Based Magnetoelectrics: Basic Theory, Choice of Materials, Model Calculations, Nanostructures and Thin Films for Multifunctional Applications, ed. by I. Tiginyanu, P. Topala, V. Ursaki (Springer, Berlin, 2016), pp. 189–226

    Google Scholar 

  6. X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, S. Buddhudu, Adv. Funct. Mater. 14, 920–926 (2004)

    Article  Google Scholar 

  7. J.V. Suchtelen, Philips Res. Rep. 27, 28–37 (1972)

    Google Scholar 

  8. G.A. Smolenski, I.E. Chupis, Ferroelectromagn. Sovt. Phys. Usp. 25, 475–493 (1982)

    Article  Google Scholar 

  9. S.C. Yang, A. Kumar, V. Petkov, S. Priya, J. Appl. Phys. 113, 144101 (2013)

    Article  Google Scholar 

  10. A. Ahlawat, V.G. Sathe, J. Raman Spectrosc. 48, 132–136 (2017)

    Article  Google Scholar 

  11. A. Ahlawat, V.G. Sathe, V. Ganesan, D.M. Phase, S. Satapathy, J. Appl. Phys. 111, 074302 (2012)

    Article  Google Scholar 

  12. Y. Jia, S.W. Or, J. Wang, H.L.W. Chan, X. Zhao, H. Luo, J. Appl. Phys. 101, 104103 (2007)

    Article  Google Scholar 

  13. S.N. Babu, K. Srinivas, T. Bhimasankaram, J. Magn. Magn. Mater. 321, 3764–3770 (2009)

    Article  Google Scholar 

  14. Q. Zhao, H. Zhang, J. Li, F. Xu, Y. Liao, C. Liu, H. Su, J. Alloys Compd. 788, 44–49 (2019)

    Article  Google Scholar 

  15. V.R. Mudinepalli, S.H. Song, B.S. Murty, Scr. Mater. 82, 9–12 (2014)

    Article  Google Scholar 

  16. M.D. Chermahini, M.M. Shahraki, M. Kazazi, Mater. Lett. 233, 188–190 (2018)

    Article  Google Scholar 

  17. M. Zhang, X. Zhang, X. Qi, Y. Li, L. Bao, Y. Gu, Ceram. Int. 43, 16957–16964 (2017)

    Article  Google Scholar 

  18. W. Cai, C. Fu, G. Chen, R. Gao, X. Deng, J. Mater. Sci.: Mater. Electron. 26, 322–330 (2015)

    Google Scholar 

  19. S. Sharma, V. Singh, A. Anshul, J.M. Siqueiros, R.K. Dwivedi, J. Appl. Phys. 123, 204102 (2018)

    Article  Google Scholar 

  20. A. Jain, A.K. Panwar, A.K. Jha, Y. Sharma, Ceram. Int. 43, 10253–10262 (2017)

    Article  Google Scholar 

  21. N.S. Negi, R. Kumar, H. Sharma, J. Shah, R.K. Kotnala, J. Magn. Magn. Mater. 456, 292–299 (2018)

    Article  Google Scholar 

  22. M. Kumari, C. Prakash, R. Chatterjee, J. Magn. Magn. Mater. 429, 60–64 (2017)

    Article  Google Scholar 

  23. B. Dhanalakshmi, K.V. Vivekananda, B.P. Rao, P.S.V.S. Rao, Physica B 571, 5–9 (2019)

    Article  Google Scholar 

  24. M. Lal, M. Shandilya, R. Rai, A. Ranjan, S. Sharma, M.A. Valente, J. Mater. Sci.: Mater. Electron. 29, 13984–14002 (2018)

    Google Scholar 

  25. Q. Yang, H. Zhang, Q. Wen, Y. Liu, IEEE Trans. Magn. 49, 4204–4206 (2013)

    Article  Google Scholar 

  26. H. Zhang, Y. He, W. Lin, Mater. Chin. 31, 1–9 (2012)

    Google Scholar 

  27. X. Huang, H. Zhang, L. Jia, H. Su, Y. Lai, J. Li, Trans. Mater. Res. Soc. Jpn 42, 155–157 (2017)

    Article  Google Scholar 

  28. Y. He, H. Zhang, W. Ling, C. Mu, Y. Li, J. Shen, IEEE Trans. Magn. 45, 4314–4316 (2009)

    Article  Google Scholar 

  29. Y. He, H. Zhang, Y. Wang, W. Ling, C. Mu, F. Bai, P. Liu, J. Alloys Compd. 504, 435–439 (2010)

    Article  Google Scholar 

  30. P. Kum-onsa, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Eur. Ceram. Soc. 35, 1441–1447 (2015)

    Article  Google Scholar 

  31. Y. Liu, X. Zhao, C. Zhang, J. Mater. Sci.: Mater. Electron. 27, 11757–11761 (2016)

    Google Scholar 

  32. Y. Matsuo, M. Inagki, T. Tomozawa, F. Nakao, IEEE Trans. Magn. 37, 2359–2361 (2001)

    Article  Google Scholar 

  33. H. Su, H.W. Zhang, X.L. Tang, Y.L. Jing, Y.L. Liu, J. Magn. Magn. Mater. 310, 17–21 (2007)

    Article  Google Scholar 

  34. H. Zhong, H.W. Zhang, H.T. Zhou, L.J. Jia, J. Magn. Magn. Mater. 300, 445–450 (2006)

    Article  Google Scholar 

  35. B.D. Cullity, Elements of X-Ray Diffraction (Addision Wesley, New York, 1972)

    Google Scholar 

  36. A.S. Gaikwad, R.H. Kadam, S.E. Shirsath, S.R. Wadgane, J. Shah, R.K. Kotnala, A.B. Kadam, J. Alloys Compd. 773, 564–570 (2019)

    Article  Google Scholar 

  37. L.J. Hua, H. Hua, Phys. Stat. Solidi A 208, 715–719 (2011)

    Article  Google Scholar 

  38. K.L. Manjusha, N. Yadav, J. Adhlakha, R.K. Shah, Kotnala. Physica B: Condens. Matter 514, 41–50 (2017)

    Article  Google Scholar 

  39. R.S. Devan, A.B. Deshpande, B.K. Chougule, J. Phys. D Appl. Phys. 40, 1864 (2007)

    Article  Google Scholar 

  40. J. Ferdousy, Md.D Rahaman, S. Akter, M.F. Kabir, T. Nusrat, M.N.I. Khan, O.G. Shovon, A.K.M. Akther Hossain, J. Mater. Sci.: Mater. Electron. 30, 1609–1625 (2019)

    Google Scholar 

  41. R.D. Waldron, Phys. Rev. 99, 1727–1735 (1955)

    Article  Google Scholar 

  42. O.S. Josyulu, J. Sobhanadri, J. Phys. Stat Solidi (a) 65, 479–483 (1981)

    Article  Google Scholar 

  43. S. Wada, T. Suzuki, T. Noma, J. Ceram. Soc. Jpn. 103, 1220–1227 (1995)

    Article  Google Scholar 

  44. K. Nakanish, P.H. Solomon, N. Furutachi, Infrared Absorption of Spectroscopy (Nankodo, Tokyo, 1978), p. 29

    Google Scholar 

  45. Y. Shen, Y. Wu, X. Li, Q. Zhao, Y. Hou, Mater. Lett. 96, 85–88 (2013)

    Article  Google Scholar 

  46. P. Thomas, K. Dwarakanath, K.B.R. Varma, T.R.N. Kutty, J. Phys. Chem. Solid. 69, 2594–2604 (2009)

    Article  Google Scholar 

  47. A. Sakthisabarimoorthi, S.A.M.B. Dhas, R. Robert, M. Jose, Mater. Res. Bull. 106, 81–92 (2018)

    Article  Google Scholar 

  48. A.F.L. Almeida, R.S. Oliveira, J.C. Goes, J.M. Sasaki, A.G. Souza Filho, J. Mendes Filho, A.S.B. Sombra, Mater. Sci. Eng., B 96, 275–283 (2002)

    Article  Google Scholar 

  49. S. Jesurani, S. Kanagesan, R. Velmurugan, T. Kalaivani, J. Mater. Sci.: Mater. Electron. 23, 668–674 (2012)

    Google Scholar 

  50. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part III, 3rd edn. (Wiley, New York, 1978), pp. 233–237

    Google Scholar 

  51. A. Herabut, A. Safari, J. Am. Ceram. Soc. 80, 2954–2958 (1997)

    Article  Google Scholar 

  52. S. Sarraute, O.T. Sørensen, B.F. Sørensen, E.R. Hansen, J. Mater. Sci. 34, 99–104 (1999)

    Article  Google Scholar 

  53. N. Rezlescu, J. Phys.: Condens. Matter 6, 5707 (1994)

    Google Scholar 

  54. M. Drofenik, A. Znidarsic, D. Makovec, J. Am. Ceram. Soc. 81, 2841–2848 (1998)

    Article  Google Scholar 

  55. H. Ren, P. Liang, Z. Yang, Mater. Res. Bull. 45, 1608–1613 (2010)

    Article  Google Scholar 

  56. J.C. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1973)

    Google Scholar 

  57. K.W. Wagner, Ann. Phys. 40, 817–819 (1973)

    Google Scholar 

  58. C.G. Koops, Phys. Rev. 83, 121–124 (1951)

    Article  Google Scholar 

  59. H. Yang, Y. Yang, Y. Lin, M. Liu, Ceram. Int. 39, 7235–7239 (2013)

    Article  Google Scholar 

  60. M. Hashim, S. Alimuddin, B. Kumar, H. Koo, S.E. Shirsath, E.M. Mohammed, J. Shah, R.K. Kotnala, H.K. Choi, H. Chung, R. Kumar, J. Alloy. Compd. 518, 11–18 (2012)

    Article  Google Scholar 

  61. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  Google Scholar 

  62. K. Funke, Prog. Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  63. I.G. Austin, N.F. Mott, Adv. Phys. 18, 41–102 (1969)

    Article  Google Scholar 

  64. J. Appel, in Solid State Physics, vol. 21, ed. by H. Ehrenreich, F. Seitz, D. Turnbull (Academic Press, New York, 1967), p. 193

    Google Scholar 

  65. D. Adler, J. Feinleib, Phys. Rev. B 2, 3112–3134 (1970)

    Article  Google Scholar 

  66. H. Zhang, C.L. Mak, J. Alloys Compd. 513, 165–171 (2012)

    Article  Google Scholar 

  67. W. Wieczorek, J. Plocharski, J. Przyluski, Solid State Ion. 28–30, 1014–1017 (1982)

    Google Scholar 

  68. A. Sen, U.N. Maiti, R. Thapa, K.K. Chattopadhyay, Appl. Phys. A 104, 1105–1111 (2011)

    Article  Google Scholar 

  69. P.K. Bajpai, K.N. Singh, Physica B 406, 1226–1232 (2011)

    Article  Google Scholar 

  70. L. Singh, W.K. Ill, B.C. Sin, A. Ullah, S.K. Woo, Y. Lee, Mater. Sci. Semicond. Process. 31, 386–396 (2015)

    Article  Google Scholar 

  71. A.K. Thomas, K. Abraham, J. Thomas, K.V. Saban, J. Asian Ceram. Soc. 5, 56–61 (2017)

    Article  Google Scholar 

  72. Y.D. Kolekar, L. Sanchez, E.J. Rubio, C.V. Ramana, Solid State Commun. 184, 34–39 (2014)

    Article  Google Scholar 

  73. B. Kaur, L. Singh, V.A. Reddy, D.Y. Jeong, N. Dabra, J.S. Hundal, Int. J. Electrochem. Sci. 11, 4120–4135 (2016)

    Article  Google Scholar 

  74. K.M. Batoo, J. Phys. Chem. Solids 72, 1400–1407 (2011)

    Article  Google Scholar 

  75. M. Hashim, S.E. Alimuddin, S. Shirsath, R. Kumar, A.S. Kumar, J. Roy, R.K. Shah, Kotnala, J. Alloys Compd. 549, 348–357 (2013)

    Article  Google Scholar 

  76. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171–179 (1972)

    Google Scholar 

  77. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloys Compd. 509, 6388–6394 (2011)

    Article  Google Scholar 

  78. M.H. Najar, K. Majid, RSC Adv. 6, 25449–25459 (2016)

    Article  Google Scholar 

  79. J. Hazarika, A. Kumar, Synth. Met. 198, 239–247 (2014)

    Article  Google Scholar 

  80. M.M. Costa, G.F.M. Pires Jr., A.J. Terezo, M.P.F. Grac, A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011)

    Article  Google Scholar 

  81. S. Nasri, M. Megdiche, M. Gargouri, Ionics 21, 67–78 (2014)

    Article  Google Scholar 

  82. R. Punia, R.S. Kundu, M. Dult, S. Murugavel, N. Kishore, J. Appl. Phys. 112, 083701 (2012)

    Article  Google Scholar 

  83. N.S. Alghunaim, Physica B 545, 12–17 (2018)

    Article  Google Scholar 

  84. P. Thomas, S. Satapathy, K. Dwarakanath, K.B.R. Varma, Express Poly. Lett. 4, 632–643 (2010)

    Google Scholar 

  85. A. Chen, Y. Zhi, L.E. Cross, Phys. Rev. B: Condens. Matter Mater. Phys. 62, 228–236 (2000)

    Article  Google Scholar 

  86. C. Rayssi, S.E. Kossi, J. Dhahri, K. Khirouni, RSC Adv. 8, 17139–17150 (2018)

    Article  Google Scholar 

  87. H. Zheng, W.J. Weng, G.R. Han, P.Y. Du, Ceram. Int. 41, 1511–1519 (2015)

    Article  Google Scholar 

  88. Y. Qinghui, Z. Huaiwu, W. Qiye, L. Yingli, J. Appl. Phys. 109, 07D733 (2011)

    Article  Google Scholar 

  89. W. Ling, H. Zhang, Y. Song, Y. Liu, Y. Li, H. Su, J. Magn. Magn. Mater. 321, 2871–2876 (2009)

    Article  Google Scholar 

  90. J. Shen, Y. Bai, J. Zhou, L. Li, J. Am. Ceram. Soc. 88, 3440–3443 (2005)

    Article  Google Scholar 

  91. L. Jia, T. Li, H. Zhang, H. Zhong, Y. Liu, G. Xue, J. Magn. Magn. Mater. 321, 2936–2940 (2009)

    Article  Google Scholar 

  92. R.S. Tebble, D.J. Craik, Magnetic Materials (Wiley-Interscience, London, 1969)

    Google Scholar 

  93. J.L. Snoek, Physica 14, 207–217 (1948)

    Article  Google Scholar 

  94. P. Zhu, Q. Zheng, R. Sun, W. Zhang, J. Gao, C. Wong, J. Alloys Compd. 614, 289–296 (2014)

    Article  Google Scholar 

  95. H.G. Zhang, L.T. Li, J. Zhou, J. Am. Ceram. Soc. 84, 2889–2894 (2011)

    Article  Google Scholar 

  96. Z. Yue, J. Zhou, L. Li, Z. Gui, J. Magn. Magn. Mater. 233, 224–229 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors, Subrin Mostafa Khan is thankful to the Department of Physics, Faculty of Science, University of Dhaka for providing the chemicals and the authorities of the Center for Advanced Research in Sciences (CARS), University of Dhaka and the Solid State Physics Laboratory, Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka for providing the samples characterization facilities. Subrin Mostafa Khan is also grateful to the Ministry of Science & Technology, Government of the People’s Republic of Bangladesh for providing the scholarship during Master of Science study at the Department of Physics, University of Dhaka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. D. Rahaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.M., Sharmin, M., Khan, M.N.I. et al. Synthesis, structural, microstructural and electromagnetic properties of (1 − x) [Ni0.25Cu0.15Zn0.60Fe2O4] + (x) [Na1/3Ca1/3Bi1/3Cu3Ti4O12] composites. J Mater Sci: Mater Electron 30, 15388–15412 (2019). https://doi.org/10.1007/s10854-019-01915-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01915-8

Navigation