Skip to main content
Log in

Fe3O4/SiO2/TiO2–Ag cubes with core/shell/shell nano-structure: synthesis, characterization and efficient photo-catalytic for phenol degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, Fe3O4/SiO2/TiO2–Ag (FST–Ag) cubes were synthesized via a facile method. FST–Ag cubes have been characterized by some techniques contain field emission scanning electron microscopy (FESEM) with an energy-dispersive X-ray (EDX) spectroscopy analysis, Transmission electron microscope (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM). The photocatalytic degradation of phenol was examined and reaction parameters were determined for best catalyst performance. Results revealed FST–Ag cubes have been successfully synthesized with Core/Shell/shell Nano-structure. The higher surface to volume ratio of the cube shape increased photo-catalytic properties. The influence of various parameters on photo-catalytic performance, like pH, photo-catalyst dose and initial concentration of phenol were examined. Catalyst dose of 0.2 g/L was obtained as the optimum amount. The degradation efficiency of phenol was increased in acidic solution pH. The removal efficiency was decreased with increasing initial phenol concentration. So, the highest degradation efficiency of phenol with photo-catalytic UV/Fe3O4/SiO2/TiO2–Ag process was caused 98.1% degradation at initial phenol concentration of 50 mg/L, solution pH of 3 during 150 min contact time, while 90.6% degradation of phenol was achieved under UV/Fe3O4/SiO2/TiO2 without Ag particles. The FST–Ag cubes are recovered and could be re-used again.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Zhang, G. Li, C.Y. Jimmy, Inorganic materials for photocatalytic water disinfection. J. Mater. Chem. 20, 4529–4536 (2010)

    Article  CAS  Google Scholar 

  2. R.-S. Juang, W.-C. Huang, Y.-H. Hsu, Treatment of phenol in synthetic saline wastewater by solvent extraction and two-phase membrane biodegradation. J. Hazard. Mater. 164, 46–52 (2009)

    Article  CAS  Google Scholar 

  3. Y. Li, S. Sun, M. Ma, Y. Ouyang, W. Yan, Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO2-coated activated carbon catalyst: effects of initial RhB content, light intensity and TiO2 content in the catalyst. Chem. Eng. J. 142, 147–155 (2008)

    Article  CAS  Google Scholar 

  4. S. Eydivand, M. Nikazar, Degradation of 1, 2-dichloroethane in simulated wastewater solution: a comprehensive study by photocatalysis using TiO2 and ZnO nanoparticles. Chem. Eng. Commun. 202, 102–111 (2015)

    Article  CAS  Google Scholar 

  5. J. Wang, R. Li, Z. Zhang, W. Sun, Y. Xie, R. Xu, Z. Xing, X. Zhang, Solar photocatalytic degradation of dye wastewater in the presence of heat-treated anatase TiO2 powder. Environ. Prog. 27, 242–249 (2008)

    Article  CAS  Google Scholar 

  6. Z. Zhang, X. Wang, J. Long, Z. Ding, X. Fu, X. Fu, H2–O2 promoting effect on photocatalytic degradation of organic pollutants in an aqueous solution without an external H2 supply. Appl. Catal. A 380, 178–184 (2010)

    Article  CAS  Google Scholar 

  7. Y. Sakatani, D. Grosso, L. Nicole, C. Boissiere, G.J.A.A. de Soler-Illia, C. Sanchez, Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility. J. Mater. Chem. 16, 77–82 (2006)

    Article  CAS  Google Scholar 

  8. H. Liu, Z. Jia, S. Ji, Y. Zheng, M. Li, H. Yang, Synthesis of TiO2/SiO2@Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff. Catal. Today 175, 293–298 (2011)

    Article  CAS  Google Scholar 

  9. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.-M. Basset, Magnetically recoverable nanocatalysts. Chem. Rev. 111, 3036–3075 (2011)

    Article  CAS  Google Scholar 

  10. Y. Gao, B. Chen, H. Li, Y. Ma, Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties. Mater. Chem. Phys. 80, 348–355 (2003)

    Article  CAS  Google Scholar 

  11. C. Wang, L. Yin, L. Zhang, L. Kang, X. Wang, R. Gao, Magnetic (γ-Fe2O3@SiO2)n@TiO2 functional hybrid nanoparticles with actived photocatalytic ability. J. Phys. Chem. C 113, 4008–4011 (2009)

    Article  CAS  Google Scholar 

  12. X. Huang, G. Wang, M. Yang, W. Guo, H. Gao, Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Mater. Lett. 65, 2887–2890 (2011)

    Article  CAS  Google Scholar 

  13. C. Adán, A. Bahamonde, M. Fernández-García, A. Martínez-Arias, Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Appl. Catal. B 72, 11–17 (2007)

    Article  CAS  Google Scholar 

  14. M. Zhou, J. Yu, B. Cheng, Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J. Hazard. Mater. 137, 1838–1847 (2006)

    Article  CAS  Google Scholar 

  15. T. Hirakawa, P.V. Kamat, Charge separation and catalytic activity of Ag@TiO2 core–shell composite clusters under UV–irradiation. J. Am. Chem. Soc. 127, 3928–3934 (2005)

    Article  CAS  Google Scholar 

  16. X. He, Y. Cai, H. Zhang, C. Liang, Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J. Mater. Chem. 21, 475–480 (2011)

    Article  CAS  Google Scholar 

  17. I. Arabatzis, T. Stergiopoulos, M. Bernard, D. Labou, S. Neophytides, P. Falaras, Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl. Catal. B 42, 187–201 (2003)

    Article  CAS  Google Scholar 

  18. B. MirzaHedayat, M. Noorisepehr, E. Dehghanifard, A. Esrafili, R. Norozi, Evaluation of photocatalytic degradation of 2, 4-dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles. J. Mol. Liq. 264, 571–578 (2018)

    Article  CAS  Google Scholar 

  19. Z. Dai, D. Li, L. Chi, Y. Li, B. Gao, N. Qiu, Q. Duan, Y. Li, Preparation of porphyrin sensitized three layers magnetic nanocomposite Fe3O4@SiO2@TiO2 as an efficient photocatalyst. Mater. Lett. 241, 239–242 (2019)

    Article  CAS  Google Scholar 

  20. J. Yang, J. Wang, X. Li, D. Wang, H. Song, Synthesis of urchin-like Fe3O4@SiO2@ZnO/CdS core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under visible light. Catal. Sci. Technol. 6, 4525–4534 (2016)

    Article  CAS  Google Scholar 

  21. Y. Chi, Q. Yuan, Y. Li, L. Zhao, N. Li, X. Li, W. Yan, Magnetically separable Fe3O4@ SiO2@ TiO2–Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. J. Hazard. Mater. 262, 404–411 (2013)

    Article  CAS  Google Scholar 

  22. F. Bavarsiha, M. Rajabi, M. Montazeri-Pour, Synthesis of SrFe12O19/SiO2/TiO2 composites with core/shell/shell nano-structure and evaluation of their photo-catalytic efficiency for degradation of methylene blue. J. Mater. Sci. 29, 1877–1887 (2018)

    CAS  Google Scholar 

  23. M. Abbas, B.P. Rao, V. Reddy, C. Kim, Fe3O4/TiO2 core/shell nanocubes: single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ceram. Int. 40, 11177–11186 (2014)

    Article  CAS  Google Scholar 

  24. M. Abbas, M. Takahashi, C. Kim, Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube. J. Nanopart. Res. 15, 1354 (2013)

    Article  CAS  Google Scholar 

  25. J. Su, Y. Zhang, S. Xu, S. Wang, H. Ding, S. Pan, G. Wang, G. Li, H. Zhao, Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions. Nanoscale 6, 5181–5192 (2014)

    Article  CAS  Google Scholar 

  26. B. Cui, H. Peng, H. Xia, X. Guo, H. Guo, Magnetically recoverable core–shell nanocomposites γ-Fe2O3@SiO2@TiO2–Ag with enhanced photocatalytic activity and antibacterial activity. Sep. Purif. Technol. 103, 251–257 (2013)

    Article  CAS  Google Scholar 

  27. S. Qin, W. Cai, X. Tang, L. Yang, Sensitively monitoring photodegradation process of organic dye molecules by surface-enhanced Raman spectroscopy based on Fe3O4@SiO2@TiO2@Ag particle. Analyst 139, 5509–5515 (2014)

    Article  CAS  Google Scholar 

  28. R. Thiruvenkatachari, S. Vigneswaran, I.S. Moon, A review on UV/TiO2 photocatalytic oxidation process (journal review). Korean J. Chem. Eng. 25, 64–72 (2008)

    Article  CAS  Google Scholar 

  29. Q. Zhang, J. Li, X. Chou, L. Gao, Z. Hai, C. Xue, Synthesis of superparamagnetic iron oxide nanoparticles in carbon reduction method. Micro Nano Lett. 8, 598–601 (2013)

    Article  CAS  Google Scholar 

  30. M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z. Chen, Y. Yin, Magnetically recoverable core–shell nanocomposites with enhanced photocatalytic activity. Chem. A 16, 6243–6250 (2010)

    CAS  Google Scholar 

  31. N. Kashif, F. Ouyang, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. J. Environ. Sci. 21, 527–533 (2009)

    Article  CAS  Google Scholar 

  32. Z. Wang, L. Shen, S. Zhu, Synthesis of core-shell@@ microspheres and their application as recyclable photocatalysts. Int. J. Photoenergy (2012). https://doi.org/10.1155/2012/202519

    Article  Google Scholar 

  33. X. Sun, F. Liu, L. Sun, Q. Wang, Y. Ding, Well-dispersed Fe3O4/SiO2 nanoparticles synthesized by a mechanical stirring and ultrasonication assisted st÷ ber method. J. Inorg. Organomet. Polym Mater. 22, 311–315 (2012)

    Article  CAS  Google Scholar 

  34. J. Lee, M. Othman, Y. Eom, T. Lee, W. Kim, J. Kim, The effects of sonification and TiO2 deposition on the micro-characteristics of the thermally treated SiO2/TiO2 spherical core–shell particles for photo-catalysis of methyl orange. Microporous Mesoporous Mater. 116, 561–568 (2008)

    Article  CAS  Google Scholar 

  35. J.-W. Lee, K. Hong, W.-S. Kim, J. Kim, Effect of HPC concentration and ultrasonic dispersion on the morphology of titania-coated silica particles. J. Ind. Eng. Chem. 11, 609–614 (2005)

    CAS  Google Scholar 

  36. H. Qi, J. Ye, N. Tao, M. Wen, Q. Chen, Synthesis of octahedral magnetite microcrystals with high crystallinity and low coercive field. J. Cryst. Growth 311, 394–398 (2009)

    Article  CAS  Google Scholar 

  37. X. Wang, L. Wang, X. He, Y. Zhang, L. Chen, A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta 78, 327–332 (2009)

    Article  CAS  Google Scholar 

  38. W. Bahnemann, M. Muneer, M.M. Haque, Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal. Today 124, 133–148 (2007)

    Article  CAS  Google Scholar 

  39. S. Ahmed, M. Rasul, R. Brown, M. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J. Environ. Manag. 92, 311–330 (2011)

    Article  CAS  Google Scholar 

  40. S. Hamzezadeh-Nakhjavani, O. Tavakoli, S.P. Akhlaghi, Z. Salehi, P. Esmailnejad-Ahranjani, A. Arpanaei, Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation. Environ. Sci. Pollut. Res. 22, 18859–18873 (2015)

    Article  CAS  Google Scholar 

  41. J. Rashid, M. Barakat, Y. Ruzmanova, A. Chianese, Fe3O4/SiO2/TiO2 nanoparticles for photocatalytic degradation of 2-chlorophenol in simulated wastewater. Environ. Sci. Pollut. Res. 22, 3149–3157 (2015)

    Article  CAS  Google Scholar 

  42. M.M. Haque, M. Muneer, D.W. Bahnemann, Semiconductor-mediated photocatalyzed degradation of a herbicide derivative, chlorotoluron, in aqueous suspensions. Environ. Sci. Technol. 40, 4765–4770 (2006)

    Article  CAS  Google Scholar 

  43. F. Caturla, J. Martin-Martinez, M. Molina-Sabio, F. Rodriguez-Reinoso, R. Torregrosa, Adsorption of substituted phenols on activated carbon. J. Colloid Interface Sci. 124, 528–534 (1988)

    Article  CAS  Google Scholar 

  44. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments. J. Hazard. Mater. 160, 265–288 (2008)

    Article  CAS  Google Scholar 

  45. S.-S. Hong, C.-S. Ju, C.-G. Lim, B.-H. Ahn, K.-T. Lim, G.-D. Lee, A photocatalytic degradation of phenol over TiO2 prepared by sol-gel method. J. Ind. Eng. Chem. 7, 99–104 (2001)

    CAS  Google Scholar 

  46. A. Adesina, Industrial exploitation of photocatalysis: progress, perspectives and prospects. Catal. Surv. Asia 8, 265–273 (2004)

    Article  CAS  Google Scholar 

  47. Z. Guo, R. Ma, G. Li, Degradation of phenol by nanomaterial TiO2 in wastewater. Chem. Eng. J. 119, 55–59 (2006)

    Article  CAS  Google Scholar 

  48. J.-M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115–129 (1999)

    Article  CAS  Google Scholar 

  49. T. Velegraki, I. Poulios, M. Charalabaki, N. Kalogerakis, P. Samaras, D. Mantzavinos, Photocatalytic and sonolytic oxidation of acid orange 7 in aqueous solution. Appl. Catal. B 62, 159–168 (2006)

    Article  CAS  Google Scholar 

  50. M.S. Nahar, K. Hasegawa, S. Kagaya, Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere 65, 1976–1982 (2006)

    Article  CAS  Google Scholar 

  51. C.-H. Chiou, C.-Y. Wu, R.-S. Juang, Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chem. Eng. J. 139, 322–329 (2008)

    Article  CAS  Google Scholar 

  52. S. Lathasree, A.N. Rao, B. SivaSankar, V. Sadasivam, K. Rengaraj, Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions. J. Mol. Catal. A 223, 101–105 (2004)

    Article  CAS  Google Scholar 

  53. S.H. Borji, S. Nasseri, A.H. Mahvi, R. Nabizadeh, A.H. Javadi, Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles. J. Environ. Health Sci. Eng. 12, 101 (2014)

    Article  CAS  Google Scholar 

  54. A. Sobczyński, Ł. Duczmal, W. Zmudziński, Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. J. Mol. Catal. A 213, 225–230 (2004)

    Article  CAS  Google Scholar 

  55. E. Sanchez, T. Lopez, Effect of the preparation method on the band gap of titania and platinum-titania sol-gel materials. Mater. Lett. 25, 271–275 (1995)

    Article  CAS  Google Scholar 

  56. D. Dvoranova, V. Brezova, M. Mazúr, M.A. Malati, Investigations of metal-doped titanium dioxide photocatalysts. Appl. Catal. B 37, 91–105 (2002)

    Article  CAS  Google Scholar 

  57. S. Kato, Y. Hirano, M. Iwata, T. Sano, K. Takeuchi, S. Matsuzawa, Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide. Appl. Catal. B 57, 109–115 (2005)

    Article  CAS  Google Scholar 

  58. Y.-C. Liang, C.-C. Wang, C.-C. Kei, Y.-C. Hsueh, W.-H. Cho, T.-P. Perng, Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition. J. Phys. Chem. C 115, 9498–9502 (2011)

    Article  CAS  Google Scholar 

  59. A. Pearson, S.K. Bhargava, V. Bansal, UV-switchable polyoxometalate sandwiched between TiO2 and metal nanoparticles for enhanced visible and solar light photococatalysis. Langmuir 27, 9245–9252 (2011)

    Article  CAS  Google Scholar 

  60. S. Xing, Z. Zhou, Z. Ma, Y. Wu, Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2. Appl. Catal. B 107, 386–392 (2011)

    Article  CAS  Google Scholar 

  61. D. Greene, R. Serrano-Garcia, J. Govan, Y. Gun’ko, Synthesis characterization and photocatalytic studies of cobalt ferrite-silica-titania nanocomposites. Nanomaterials 4, 331–343 (2014)

    Article  CAS  Google Scholar 

  62. F. Ghasemy-Piranloo, F. Bavarsiha, S. Dadashian, M. Rajabi, Synthesis of core/shell/shell Fe3O4/SiO2/ZnO nanostructure composite material with cubic magnetic cores and study of the photo-degradation ability of methylene blue. J. Aust. Ceram. Soc. (2019). https://doi.org/10.1007/s41779-019-00359-x

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Biosphere Technology Company and all experiments were performed in the Environmental Laboratory of the Company.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saeideh Dadashian or Fatemeh Bavarsiha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemy-Piranloo, F., Dadashian, S. & Bavarsiha, F. Fe3O4/SiO2/TiO2–Ag cubes with core/shell/shell nano-structure: synthesis, characterization and efficient photo-catalytic for phenol degradation. J Mater Sci: Mater Electron 30, 12757–12768 (2019). https://doi.org/10.1007/s10854-019-01641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01641-1

Navigation