Skip to main content

Advertisement

Log in

Optimization of absorber layer for band gap energy moderation of nanostructured SnS thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, band gap energy moderated nanostructured Sn1−xZnxS thin film solar cell devices are investigated in details in order to optimize the number of their layers, which can enhance their efficiency. Sn1−xZnxS nanostructures were synthesized by simple and cost-effective co-precipitation method and were primarily characterized for the study of their structural and phase purification as well as morphological and optical properties. Structural results confirmed the formation of polycrystalline orthorhombic and hexagonal phase of SnS and ZnS nanostructures, respectively. Morphological studies showed that increasing the Zn concentrations changed the morphology of samples from the rod- to spherical- and hexagonal-like particles. Electrical characterization also presented the highest carrier concentration and conductivity conversion in the Sn1/2Zn1/2S sample. Photovoltaic devices were deposited using the ethyl cellulose as a green binder on the transparent substrates and TiO2 buffer layers. Photovoltaic characterization showed that a sample moderated from low-to-high values of band gap energy and with four layers has better efficiency (3.17%) because of factors such as having a wide broadband range of band gap energy in absorber layer, increase in carrier lifetimes, presence of minor carriers in output current, and an increase in carrier concentration of the moderated layers. This paper also investigates and compares our results with the literature and gives some suggestions for coping with the problems involved in having a high number of layers in the fabricated devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Ramya, K.T.R. Reddy, Int. J. Energy Res. 42, 5 (2018)

    Google Scholar 

  2. T.R. Rana, S. Kim, J. Kim, Curr. Appl. Phys. 18, 6 (2018)

    Article  Google Scholar 

  3. Y. Gupta, C. Ravikant, A. Palakkandy, Glob. Chall. 2, 7 (2018)

    Google Scholar 

  4. S.S. Hegde, A.G. Kunjomana, P. Murahari, B.K. Prasad, K. Ramesh, Surf. Interfaces 10, 78–84 (2018)

    Article  Google Scholar 

  5. M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, F. Niknia, M.R. Mahmoudian, M. Sookhakian, Mater. Chem. Phys. 195, 187–194 (2017)

    Article  Google Scholar 

  6. K.T. Ramakrishna Reddy, N. Koteswara Reddy, R.W. Miles, Sol. Energy Mater. Sol. Cells 90(18–19), 3041–3046 (2006)

    Article  Google Scholar 

  7. I. Masaya, T. Hiroshi, Jpn. J. Appl. Phys. 47, 10R (2008)

    Google Scholar 

  8. Y. Wang, H. Gong, B. Fan, G. Hu, J. Phys. Chem. C 114, 7 (2010)

    Google Scholar 

  9. H. Park Helen, R. Heasley, L. Sun et al., Prog. Photovoltaics Res. Appl. 23(7), 901–908 (2015)

    Article  Google Scholar 

  10. P. Sinsermsuksakul, L. Sun, W. Lee Sang et al., Adv. Energy Mater. 4(15), 1400496 (2014)

    Article  Google Scholar 

  11. J.A. Andrade-Arvizu, M. Courel-Piedrahita, O. Vigil-Galán, J. Mater. Sci. 26, 7 (2015)

    Google Scholar 

  12. H.H. Park, A. Jayaraman, R. Heasley et al., Appl. Phys. Lett. 105, 20 (2014)

    Google Scholar 

  13. F. Tahvilzadeh, N. Rezaie, Opt. Quantum Electron. 48, 2 (2016)

    Article  Google Scholar 

  14. N. Rezaie, A. Kosarian, Opt. Quant. Electron. 47, 10 (2015)

    Article  Google Scholar 

  15. A. Morales-Acevedo, Sol. Energy 83, 9 (2009)

    Google Scholar 

  16. A. Morales-Acevedo, Energy Procedia 2, 1 (2010)

    Article  Google Scholar 

  17. B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Mater. Chem. Phys. 71, 1 (2001)

    Article  Google Scholar 

  18. G. Biswajit, D. Madhumita, B. Pushan, D. Subrata, Semicond. Sci. Technol. 24, 2 (2009)

    Google Scholar 

  19. A.R. Garcia-Angelmo, R. Romano-Trujillo, J. Campos-Álvarez, O. Gomez-Daza, M.T.S. Nair, P.K. Nair, Phys. Status Solidi (A) 212, 10 (2015)

    Article  Google Scholar 

  20. A. Yago, S. Sasagawa, Y. Akaki et al., Phys. Status Solidi C 14, 6 (2017)

    Google Scholar 

  21. V. Steinmann, R. Jaramillo, K. Hartman et al., Adv. Mater. 26, 44 (2014)

    Article  Google Scholar 

  22. M. Cheraghizade, F. Jamali-Sheini, P. Shabani, Mater. Sci. Semicond. Process. 90, 120–128 (2019)

    Article  Google Scholar 

  23. P.D.F. Icdd, Powder Diffraction File (Newtown Square, Pennsylvania, USA, 1997)

    Google Scholar 

  24. F. Jamali-Sheini, M. Cheraghizade, F. Niknia, R. Yousefi, MRS Commun. 6, 4 (2016)

    Article  Google Scholar 

  25. M. Wang, J. Zhao, R. Xu, N. Fu, X. Wang, J. Alloys Compd. 674, 353–359 (2016)

    Article  Google Scholar 

  26. S.N. Basahel, T.T. Ali, K. Narasimharao, A.A. Bagabas, M. Mokhtar, Mater. Res. Bull. 47, 11 (2012)

    Article  Google Scholar 

  27. B. Ghanbari, F. Jamali-Sheini, R. Yousefi, J. Mater. Sci. 29, 13 (2018)

    Google Scholar 

  28. A.K. Singh, G.S. Thool, S.R. Deo, R.S. Singh, A. Gupta, Res. Chem. Intermed. 38, 8 (2012)

    Google Scholar 

  29. M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, Appl. Phys. A 123, 6 (2017)

    Article  Google Scholar 

  30. F. Jamali-Sheini, R. Yousefi, N. Ali Bakr, M. Cheraghizade, M. Sookhakian, N.M. Huang, Mater. Sci. Semicond. Process. 32, 172–178 (2015)

    Article  Google Scholar 

  31. M. Cheraghizade, R. Yousefi, F. Jamali-Sheini, A. Saáedi, N. Ming Huang, Mater. Sci. Semicond. Process. 21, 98–103 (2014)

    Article  Google Scholar 

  32. A.A. Yadav, E.U. Masumdar, Sol. Energy 84, 8 (2010)

    Google Scholar 

  33. A.A. Yadav, E.U. Masumdar, J. Alloy. Compd. 505, 2 (2010)

    Article  Google Scholar 

  34. N. Muthukumarasamy, S. Jayakumar, M.D. Kannan, R. Balasundaraprabhu, Sol. Energy 83, 4 (2009)

    Article  Google Scholar 

  35. G.S. Shahane, B.M. More, C.B. Rotti, L.P. Deshmukh, Mater. Chem. Phys. 47, 2 (1997)

    Article  Google Scholar 

  36. L.P. Deshmukh, B.M. More, C.B. Rotti, G.S. Shahane, Mater. Chem. Phys. 45, 2 (1996)

    Article  Google Scholar 

  37. D.S. Sutrave, G.S. Shahane, V.B. Patil, L.P. Deshmukh, Mater. Chem. Phys. 65, 3 (2000)

    Article  Google Scholar 

  38. Y. Wang, P.D. Townsend, J. Phys. 398, 1 (2012)

    Google Scholar 

  39. F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Solid State Sci. 79, 30–37 (2018)

    Article  Google Scholar 

  40. F. Jamali‐Sheini, F. Niknia, M. Cheraghizade, R. Yousefi, R. Mahmoudian Mohammad, ChemElectroChem 4(6), 1478–1486 (2017)

    Article  Google Scholar 

  41. R. Kripal, A.K. Gupta, S.K. Mishra, R.K. Srivastava, A.C. Pandey, S.G. Prakash, Spectrochim. Acta Part A 76, 5 (2010)

    Google Scholar 

  42. M. Mall, L. Kumar, J. Lumin. 130, 4 (2010)

    Article  Google Scholar 

  43. M. Devika, N. Koteeswara Reddy, M. Prashantha et al., phys. Status solidi (A) 207(8), 1864–1869 (2010)

    Article  Google Scholar 

  44. P. Prathap, N. Revathi, Y.P.V. Subbaiah, K.T. Ramakrishna Reddy, R.W. Miles, Solid State Sci. 11(1), 224–232 (2009)

    Article  Google Scholar 

  45. F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Sol. Energy Mater. Solar Cells 154, 49–56 (2016)

    Article  Google Scholar 

  46. F. Monjezi, F. Jamali-Sheini, R. Yousefi, Sol. Energy 171, 508–518 (2018)

    Article  Google Scholar 

  47. F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.03.011

    Google Scholar 

  48. A. Eskandari, F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Appl. Nanosci. 8, 5 (2018)

    Article  Google Scholar 

  49. A. Morales-Acevedo, Sol. Energy Mater. Sol. Cells 95, 10 (2011)

    Article  Google Scholar 

  50. S.S. Hegde, A.G. Kunjomana, M. Prashantha, C. Kumar, K. Ramesh, Thin Solid Films (2013). https://doi.org/10.1016/j.tsf.2013.08.078

    Google Scholar 

  51. M.M. Tavakoli, M.H. Mirfasih, S. Hasanzadeh, H. Aashuri, A. Simchi, Phys. Chem. Chem. Phys. 18, 17 (2016)

    Article  Google Scholar 

  52. Y. Shi, C. Zhu, L. Wang et al., Chem. Mater. 25, 6 (2013)

    Article  Google Scholar 

  53. T.-L. Li, Y.-L. Lee, H. Teng, Energy Environ. Sci. 5, 1 (2012)

    Google Scholar 

  54. G. Yue, Y. Lin, X. Wen, L. Wang, D. Peng, J. Mater. Chem. 22, 32 (2012)

    Google Scholar 

  55. S. Gedi, V.R. Minna Reddy, B. Pejjai, C.W. Jeon, C. Park, R.R. KT, Appl. Surf. Sci. 372, 116–124 (2016)

    Article  Google Scholar 

  56. L. Zhu, L. Wang, F. Xue et al., Adv. Sci. 4, 1 (2016)

    Google Scholar 

  57. A.M.S. Arulanantham, S. Valanarasu, K. Jeyadheepan, V. Ganesh, M. Shkir, J. Mol. Struct. (2018). https://doi.org/10.1016/j.molstruc.2017.09.077

    Google Scholar 

Download references

Acknowledgments

Farid Jamali-Sheini and Mohsen Cheraghizade expressed gratefully acknowledge from National Iranian South Oil Company for financial support of this research (Grant No. 97-dk-1317). Farid Jamali-Sheini also gratefully acknowledges Islamic Azad University, Ahvaz Branch and Advanced Surface Engineering and Nano Materials Research Center of Islamic Azad University, Ahvaz Branch, Ahvaz, Iran for financial and instrumental support of this research, respectively. Mohsen Cheraghizade also expressed gratefully acknowledge from the presidency of the Islamic Republic of Iran, National Elites Foundation (Tehran and Khuzestan branches).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Jamali-Sheini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

cheraghizade, M., Jamali-Sheini, F. & Shabani, P. Optimization of absorber layer for band gap energy moderation of nanostructured SnS thin films. J Mater Sci: Mater Electron 30, 11123–11135 (2019). https://doi.org/10.1007/s10854-019-01455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01455-1

Navigation