Skip to main content
Log in

Optical and electrical properties of alkaline-doped and As-alloyed amorphous selenium films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrical and optical properties Cs-doped a-Se0.95As0.05 (stabilized a-Se that has been alloyed with As) have been investigated. As expected there was no electron paramagnetic resonance signal on Cs-doped films or bulk samples, which put the spin-active defect concentrations below 1015 cm−3. The Cs-addition to a-Se0.95As0.05, leads to the n-type doping of a-Se0.95As0.05 in the sense that the undoped material has μhτh>> μeτe whereas the alkaline doped material has μeτe>> μhτh. The Cs addition also leads to a reduction of the refractive index n and a reduction of the glass transition temperature Tg, and affects the temporal relaxation behavior of a-Se film thickness after annealing and sequential quenching. We have measured the refractive index dispersion, n(λ) versus λ, bandgap (Eg) and Urbach width (ΔE) for undoped and Cs-doped films at room temperature and at a temperature just below the glass transition temperature. The photoluminescence (PL) experiments confirm earlier experiments that the PL emission is a broad emission spectrum with a significant Stoke’s shift following roughly the ~ Eg/2 empirical rule. The present work confirms that Cs-doped and As-stabilized a-Se is n-type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Sensors, vol. 11 (MDPI, Switzerland, 2011), p. 5112. https://doi.org/10.3390/s110505112. (See also references therein.)

    Article  CAS  Google Scholar 

  2. V.I. Mikla, V.V. Mikla, Amorphous Chalcogenides: The Past, Present and Future, Chapters 7 and 8 (Elsevier, Amsterdam, 2012)

    Google Scholar 

  3. V.I. Mikla, V.V. Mikla, Medical Imaging Technology, Ch. 5 (Elsevier, Amsterdam, 2014)

    Google Scholar 

  4. J.A. Rowlands, J. Yorkston, Flat panel detector for digital radiography, Chapter 4, in Handbook of Medical Imaging, vol. 1, ed. by J. Beutel, H.L. Kundel, R.L. Van Metter (SPIE Press, Bellingham, 2000), pp. 225–313

    Google Scholar 

  5. O. Tousignant, Y. Demers, L. Laperriere, a-Se Flat Panel Detectors for Medical Application, in 2007 IEEE Sensors Applications Symposium, San Diego, CA, USA, 25 June 2007. https://doi.org/10.1109/sas.2007.374373

  6. M.Z. Kabir, S. Kasap, Photoconductors for X-ray image detectors, in The Springer Handbook of Electronic and Photonic Materrials, Chapter 45, Second edn., ed. by S.O. Kasap, P. Capper (Springer, Heidelberg, 2017), pp. 1125–1147

    Google Scholar 

  7. J.C. Schottmiller, J. Vac. Sci. Technol. 12, 807 (1975)

    Article  CAS  Google Scholar 

  8. S.O. Kasap, K.V. Koughia, B. Fogal, G. Belev, R.E. Johanson, Semiconductors 37, 789 (2003)

    Article  CAS  Google Scholar 

  9. S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, L. Laperriere, A. Reznik, J.A. Rowlands, Phys. Status Solidi B 246, 1794 (2009)

    Article  CAS  Google Scholar 

  10. V.I. Mikla, V.V. Mikla, J. Non-Crystal, Solids 357, 22 (2011). (See also references therein.)

  11. S. Kasap, C. Koughia, J. Berashevich, R. Johanson, A. Reznik, J. Mater. Sci.: Mater. Electron. 26, 4644 (2015). (See also references therein.)

  12. M.D. Tabak, W.J. Hillegas, J. Vac. Sci. Technol. 9, 387 (1972)

    Article  CAS  Google Scholar 

  13. V.I. Mikla, J.M. Turovci, V.V. Mikla, N. Mehta, Prog. Solid State Chem. 49, 1 (2018)

    Article  CAS  Google Scholar 

  14. M. Abkowitz, F. Jensen, A.R. Melnyk, Philos. Mag. B 51, 405 (1985)

    Article  CAS  Google Scholar 

  15. Mark A. Hughes, Yanina Fedorenko, Behrad Gholipour, Jin Yao, Tae-Hoon Lee, R.M. Gwilliam, K.P. Homewood, S. Hinder, D.W. Hewak, S.R. Elliott, R.J. Curry, Nat. Commun. 5, 5346 (2014)

    Article  CAS  Google Scholar 

  16. Y.G. Fedorenko, M.A. Hughes, J.L. Colaux, C. Jeynes, R.M. Gwilliam, K. Homewood, B. Gholipour, J. Yao, D.W. Hewak, T.-H. Lee, S.R. Elliott, R.J. Curry, Thin Solid Films 589, 369 (2015)

    Article  CAS  Google Scholar 

  17. C. Juhasz, V. Gembala, S.O. Kasap, J. Mater. Sci.: Mater. Electron. 10, 633 (1999)

    CAS  Google Scholar 

  18. W.C. Tan, G. Belev, K. Koughia, R. Johanson, S.K. O’Leary, S. Kasap, J. Mater. Sci.: Mater. Electron. 18, S429 (2007)

    CAS  Google Scholar 

  19. G. Belev, S.O. Kasap, J. Non-Cryst. Solids 345, 484 (2004)

    Article  Google Scholar 

  20. Y. Jung, O. Güneş, G. Belev, C. Koughia, R. Johanson, S. Kasap, J. Mater. Sci.: Mater. Electron. 28, 7139 (2017)

    CAS  Google Scholar 

  21. S. Kasap, J. Malek, R. Svoboda, Thermal properties and thermal analysis: fundamentals, experimental techniques and applications, in Springer Handbook of Electronic and Photonic Materials, Ch. 19, Second edn., ed. by S. Kasap, P. Capper (Springer, Heidelberg, 2017)

    Chapter  Google Scholar 

  22. B. Fogal, S. Kasap, Can. J. Phys. 92, 634 (2014)

    Article  CAS  Google Scholar 

  23. S.C. Agarwal, Phys. Rev. B 7, 685 (1972)

    Article  Google Scholar 

  24. A.V. Kolobov, M. Kondo, H. Oyanagi, A. Matsuda, K. Tanaka, Phys. Rev. B 58, 12004 (1998)

    Article  CAS  Google Scholar 

  25. I.W.Y.I.T. Shimizu, J. Non-Cryst. Solids 22, 109 (1976)

    Article  Google Scholar 

  26. G. Pfister, M. Morgan, Philos. Mag. B 41, 209 (1980)

    Article  CAS  Google Scholar 

  27. R. Swanepoel, J. Phys. E: Sci. Instrum. 17, 896 (1984)

    Article  CAS  Google Scholar 

  28. S.O. Kasap, W.C. Tan, J. Singh, A.K. Ray, Fundamental optical properties of materials I, in Optical Properties of Condensed Matter and Applications, Chapter 1, Second edn., ed. by J. Singh (Wiley, Chichester, 2019)

    Google Scholar 

  29. J. Mistrik, S. Kasap, H.E. Ruda, C. Koughia, J. Singh, Optical properties of electronic materials: fundamentals and characterization, in Springer Handbook of Electronic and Photonic Materials, Chapter 3, Second edn., ed. by S. Kasap, P. Capper (Springer, Heidelberg, 2017)

    Google Scholar 

  30. W. Sellmeier, Annalen der Physik und Chemie 219, 272 (1871)

    Article  Google Scholar 

  31. R.A. Street, T.M. Searle, I.G. Austin, in Proceeding of Twelfth International Conference on the Physics of Semiconductors, July 15–19, 1974 (Stuttgart), pp. 1037–1041

  32. R.A. Street, Adv. Phys. 25, 397 (1976)

    Article  CAS  Google Scholar 

  33. M. Abkowitz, F. Jansen, A. Melnyk, Philos. Mag. 51, 405 (1985)

    Article  CAS  Google Scholar 

  34. I. Dash, D. Tonchev, G. Belev, H. Mani, S. Kasap, Phys. Status Solidi C 6, S98 (2009)

    Article  Google Scholar 

  35. D. Tonchev, S.O. Kasap, Phys. Chem. Glasses 42(1), 66–71 (1992)

    Google Scholar 

  36. D. Adler, E.J. Yoffa, Can. J. Chem. 55, 1920 (1977)

    Article  CAS  Google Scholar 

  37. K. Tanaka, K. Shimakawa, Amorphous and Chalcogenide Semiconductors and Related Materials, Chapter 5 (Springer, New York, 2011). (See also references therein.)

  38. M. Abkowitz, D.F. Pochan, J.M. Pochan, J. Appl. Phys. 51, 1539 (1980)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank The Royal Society (London) for an International Exchanges Grant (IE160035) and the Engineering and Physical Sciences Research Council (UK) Grant EP/N015215/1 for supporting this work. In addition the authors thank Analogic Canada and NSERC for a CRD Grant. The authors acknowledge many helpful discussions with Dr. Habib Mani at Analogic Canada Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Koughia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The transmission spectrum T(λ) through a nonuniform filmof a non-uniform thin film with average thickness d and thickness variation over the field of illumination Δd may be expressed as [27,28,29,30],

$$ T(\lambda ) = \left( {\frac{1}{{\varphi_{2} -\varphi_{1}}}} \right) \int\limits_{{\varphi_{1} }}^{{\varphi_{2} }} {\frac{A(\lambda )X(\lambda )}{{B(\lambda ) - C(\lambda )X(\lambda )\cos (\varphi ) + D(\lambda )X(\lambda )^{2} }}} d\varphi $$
(4)

where λ is a light wavelength, φ = 4πnd/λ, φ1 = 4πn(d − Δd)/λ and φ2 = 4πn(d + Δd)/λ, n(λ) is the wavelength dependent refractive index. The functions A(λ), B(λ), C(λ) and D(λ) are defined as

$$ A\left( \lambda \right) = 1 6n\left( \lambda \right)^{ 2} s, $$
(5)
$$ B\left( \lambda \right) \, = \, \left[ {n\left( \lambda \right) + 1\left] {^{ 3} } \right[n\left( \lambda \right) + s^{ 2} } \right], $$
(6)
$$ C\left( \lambda \right) \, = { 2}\left[ {n\left( \lambda \right)^{ 2} - 1} \right]\left[ {n\left( \lambda \right)^{ 2} - s^{ 2} } \right]{\text{ and}} $$
(7)
$$ D\left( \lambda \right) \, = \, \left[ {n\left( \lambda \right) - 1\left] {^{ 3} } \right[n\left( \lambda \right) - s^{ 2} } \right] $$
(8)

where s is the refractive index of substrate which is assumed to be independent of λ, and X(λ) as

$$ X\left( \lambda \right) \, = { \exp }\left[ { - \alpha \left( \lambda \right)d} \right] $$
(9)

where α(λ) is an optical absorption coefficient.

To fit Eq. (4) to experimental data we need to choose the appropriate values of d and Δd as well as appropriate functions n(λ) and α(λ), i.e. α(E), where E is photon energy related to λ through E = hc/λ. One-pole Sellmeier equation has been used for the dispersion of refractive index n(λ) as in Eq. (1).

The absorption coefficient α(E) was chosen as a modified Urbach approximation that includes a second order term in the argument,

$$ \alpha (E) = \exp \left[ {\frac{{E - E_{g} }}{\Delta E} - a\left( {E - E_{g} } \right)^{2} } \right] $$
(10)

where E is photon energy, Eg is optical band gap energy, ΔE is Urbach width (reciprocal of the Urbach slope), and the parameter a represents an additional correction.

Overall, the model has eight adjustable parameters d, Δd, n0, Bs, Cs, Eg, ΔE and a which allows Eq. (4) to fit experimental data nearly perfectly as shown in Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güneş, O., Koughia, C., Curry, R.J. et al. Optical and electrical properties of alkaline-doped and As-alloyed amorphous selenium films. J Mater Sci: Mater Electron 30, 16833–16842 (2019). https://doi.org/10.1007/s10854-019-01386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01386-x

Navigation