Skip to main content
Log in

Effect of holmium oxide on impedance and dielectric behavior of polyaniline–holmium oxide composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Applying chemical in situ polymerization method, conducting polyaniline–holmium oxide (PANI/Ho2O3) composites with varying wt% of Ho2O3 in PANI were prepared. Composites were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. Room temperature frequency response conductivity and the dielectric studies of the as synthesized composites were investigated in the range 50 to 106 Hz. AC conductivity was found to decrease with the increasing wt% of Ho2O3. Further, conductivity of the composites obeyed power law of disordered materials. Cole–Cole plots for each composite, depicted single semicircle inferring that the conduction is due to the hopping of charge carriers. With increasing wt% of Ho2O3, dielectric constant and dielectric loss both decreased and at low frequencies, high dielectric constant of the composites, found decreasing with increasing applied frequencies due to Maxwell–Wagner type polarization. Tangent loss plots showed relaxation peaks at the resonant frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.K. Das, S. Prusty, Polym. Plast. Technol. Eng. 51, 1487 (2012)

    Article  Google Scholar 

  2. G. Ćirić-Marjanovic, Synth. Met. 170, 31 (2013)

    Article  Google Scholar 

  3. Y.T. Ravikiran, M.T. Lagare, M. Sairam, N.N. Mallikarjuna, B. Sreedhar, S. Manohar, A.G. MacDiarmid, T.M. Aminabhavi, Synth. Met. 156, 1139 (2006)

    Article  Google Scholar 

  4. R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, S. Thomas, Appl. Phys. A 123, 245 (2017)

    Article  Google Scholar 

  5. T. Machappa, M.V.N.A. Prasad, Phys. B Condens. Matter 404, 4168 (2009)

    Article  Google Scholar 

  6. T. Machappa, M.V.N.A. Prasad, Ferroelectrics 392, 71 (2009)

    Article  Google Scholar 

  7. T. Machappa, S. Manjunatha, A. Sunilkumar, Int. J. Sci. Technol. Manag. 04, 714 (2015)

    Google Scholar 

  8. B.P. Prasanna, D.N. Avadhani, H.B. Muralidhara, K. Chaitra, V.R. Thomas, M. Revanasiddappa, N. Kathyayini, Bull. Mater. Sci. 39, 667 (2016)

    Article  Google Scholar 

  9. M.V.N.A. Prasad, A.S. Roy, K.R. Anilkumar, J. Appl. Polym. Sci. 123, 1928 (2012)

    Article  Google Scholar 

  10. R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, T. Chandrasekhar, S. Thomas, Polym. Compos. 39, 3545 (2018)

    Article  Google Scholar 

  11. R.D. Balikile, A.S. Roy, S.C. Nagaraju, G. Ramgopal, J. Mater. Sci. 28, 7368 (2017)

    Google Scholar 

  12. P. Somani, B.B. Kale, D.P. Amalnerkar, Synth. Met. 106, 53 (1999)

    Article  Google Scholar 

  13. G. Ciric Marjanovic, Synth. Met. 177, 1 (2013)

    Article  Google Scholar 

  14. S. Manjunatha, T. Machappa, Y.T. Ravikiran, B. Chethan, A. Sunilkumar, Phys. B Phys. Condens. Matter 561, 170 (2019)

    Article  Google Scholar 

  15. J. Li, J. Ma, S. Chen, J. He, Y. Huang, Food Hydrocoll. 82, 363 (2018)

    Article  Google Scholar 

  16. M. Ma, Y. Yang, W. Li, R. Feng, Z. Li, P. Lyu, Y. Ma, J. Mater. Sci. 54, 323 (2019)

    Article  Google Scholar 

  17. K. Jiang, H. Zhao, J. Dai, D. Kuang, T. Fei, T. Zhang, A.C.S. Appl, Mater. Interfaces 8, 25529 (2016)

    Article  Google Scholar 

  18. S. Manjunatha, T. Machappa, A. Sunilkumar, Y.T. Ravikiran, J. Mater. Sci. 29, 11581 (2018)

    Google Scholar 

  19. B. Karmakar, K. Annapurna, J. Non. Cryst. Solids 353, 1377 (2007)

    Article  Google Scholar 

  20. H.M. Shiri, A. Ehsani, Bull. Chem. Soc. Japan 89, 1201 (2016)

    Article  Google Scholar 

  21. T. Pan, M. Huang, Mater. Chem. Phys. 129, 919 (2011)

    Article  Google Scholar 

  22. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, S.-N. Masoud, J. Mater. Sci. 28, 1914 (2017)

    Google Scholar 

  23. R. Megha, Y.T. Ravikiran, S.C.V. Kumari, H.G.R. Prakash, CH.V.V. Ramana, S. Thomas, Compos. Interfaces 26, 309 (2019)

    Article  Google Scholar 

  24. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Ceram. Int. 41, 9593 (2015)

    Article  Google Scholar 

  25. V. Gautam, A. Srivastava, K.P. Singh, V.L. Yadav, Polym. Sci. Ser. A 58, 206 (2016)

    Article  Google Scholar 

  26. B.K. Sharma, N. Khare, S.K. Dhawan, H.C. Gupta, J. Alloys Compd. 477, 370 (2009)

    Article  Google Scholar 

  27. M.N. Abdusalyamova, F.A. Makhmudov, E.N. Shairmardanov, I.D. Kovalev, P.V. Fursikov, I.I. Khodos, Y.M. Shulga, J. Alloys Compd. 601, 31 (2014)

    Article  Google Scholar 

  28. Y.G. Wang, H.Q. Li, Y.Y. Xia, Adv. Mater. 18, 2619 (2006)

    Article  Google Scholar 

  29. G. Schaack, J.A. Koningstein, J. Opt. Soc. Am. 60, 1110 (1970)

    Article  Google Scholar 

  30. N. Dilawar, S. Mehrotra, D. Varandani, B.V. Kumaraswamy, S.K. Haldar, A.K. Bandyopadhyay, Mater. Charact. 59, 462 (2008)

    Article  Google Scholar 

  31. S.D. Pandey, K. Samanta, J. Singh, N.D. Sharma, A.K. Bandyopadhyay, J. Appl. Phys. 116, 133504 (2014)

    Article  Google Scholar 

  32. J. Bisquert, G.G. Belmonte, Russ. J. Electrochem. 40, 352 (2004)

    Article  Google Scholar 

  33. J.C. Dyre, J. Appl. Phys. 64, 2456 (1988)

    Article  Google Scholar 

  34. N. Maity, A. Kuila, S. Das, D. Mandal, A. Shit, A.K. Nandi, J. Mater. Chem. A 3, 20736 (2015)

    Article  Google Scholar 

  35. H.M. Kim, C.Y. Lee, J. Joo, Korean Phys. Soc. 36, 371 (2000)

    Google Scholar 

  36. K.W. Wagner, Ann. Phys. 5, 817 (1913)

    Article  Google Scholar 

  37. A.K.M.S. Sinha, S.K. Chatterjee, J. Ghosh, Polym. Compos. 38, 287 (2017)

    Article  Google Scholar 

  38. N. Rezlescu, E. Rezlescu, Phys. Status Solidi 23, 575 (1974)

    Article  Google Scholar 

  39. J. Bao, J. Zhou, Z. Yue, L. Li, Z. Gui, J. Magn. Magn. Mater. 250, 131 (2002)

    Article  Google Scholar 

  40. I. Sadiq, S. Naseem, M. Naeem Ashiq, M.A. Khan, S. Niaz, M.U. Rana, Prog. Nat. Sci. Mater. Int. 25, 419 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bengaluru, in providing facilities for structural characterization of the samples. S. Manjunatha thanks Sri D. K. Mohan, Chairman, Dr. L. Suresh, Principal, Cambridge Institute of Technology, Bengaluru for their support in research activity. All the authors render special thanks to Dr. Yashvanth Bhupal, Director and Prof. Y.J. Prithviraj, Dep. Director, Ballari Institute of Technology & Management, Ballari for their encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. T. Ravikiran or T. Machappa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, S., Sunilkumar, A., Ravikiran, Y.T. et al. Effect of holmium oxide on impedance and dielectric behavior of polyaniline–holmium oxide composites. J Mater Sci: Mater Electron 30, 10332–10341 (2019). https://doi.org/10.1007/s10854-019-01371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01371-4

Navigation