Skip to main content
Log in

Conductive mechanism and the enhancement high-power electrical properties of Mn-modified Bi(Sc3/4In1/4)O3–PbTiO3–Pb(Mg1/3Nb2/3)O3 high temperature piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, we report the improved high-power electrical properties and the conductive mechanism of the 0.40Bi(Sc3/4In1/4)O3–0.58PbTiO3–0.02Pb(Mg1/3Nb2/3)O3xMnO2 (BSI–PT–PMN–xMn, x = 0.0–0.8) system synthesized by a modified two-step solid state reaction method. A pure perovskite phase has been detected by the X-ray diffraction analysis of the BSI–PT–PMN–xMn ceramics, and the mechanical quality factor Qm has been found to increase from 28 to 210 with Mn content increasing from 0.0 to 0.8. The DC resistivity measurement indicated that the resistivity of the BSI–PT–PMN–xMn ceramics increases firstly, reaching the maximum at x = 0.4, and then decreases with more Mn modified. The conduction behavior can be described by the intrinsic charge carriers conduction mechanism and extrinsic semiconductor conductive mechanism in different temperature range. The high DC resistivity over 109 Ω cm at 300 °C together with the good electrical properties of piezoelectric constant d33 336 pC/N, planar electromechanical coupling factor kp 42.8%, mechanical quality factor Qm 120 and Curie temperature Tc 414 °C of the BSI–PT–PMN–0.4Mn ceramics makes it promising candidates for high temperature high-power piezoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Zhang, F. Yu, J. Am. Ceram. Soc. 94, 3153 (2011)

    Article  Google Scholar 

  2. O.O. Ivashchuk, A.V. Shchagin, A.S. Kubankin, I.S. Nikulin, A.N. Oleinik, V.S. Miroshnik, V.I. Volkov, Sci. Rep. 8, (2018)

  3. J. Wu, X. Gao, J. Chen, C.-M. Wang, S. Zhang, S. Dong, Acta Phys. Sin. 67, (2018)

  4. C. Fei, T. Zhao, J. Zhang, Y. Quan, D. Wang, X. Yang, Q. Chen, P. Lin, D. Li, Y. Yang, S. Dong, W. Ren, K.K. Shung, Q. Zhou, J. Alloys Compd. 743, 365 (2018)

    Article  Google Scholar 

  5. B. Jaffe, Piezoeletric ceramics (Academic Press, London, 1971)

    Google Scholar 

  6. R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Appl. Acoust. 41, 299 (1994)

    Article  Google Scholar 

  7. Z. Gubinyi, C. Batur, A. Sayir, F. Dynys, J. Electroceram. 20, 95 (2008)

    Article  Google Scholar 

  8. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)

    Article  Google Scholar 

  9. L.L. Fan, J. Chen, Q. Wang, J.X. Deng, R.B. Yu, X.R. Xing, Ceram. Int. 40, 7723 (2014)

    Article  Google Scholar 

  10. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.E. Park, Jpn. J. Appl. Phys. 40, 5999 (2001)

    Article  Google Scholar 

  11. R.E. Eitel, C.A. Randall, T.R. Shrout, S.E. Park, Jpn. J. Appl. Phys. 41, 2099 (2002)

    Article  Google Scholar 

  12. Z. Hu, J. Chen, M. Li, X. Li, G. Liu, S. Dong, J. Appl. Phys. 110, 064102 (2011)

    Article  Google Scholar 

  13. Z. Yao, H. Liu, Y. Liu, Z. Wu, M. Cao, H. Hao, Appl. Phys. Lett. 92, 142905 (2008)

    Article  Google Scholar 

  14. J. Chen, X. Tan, W. Jo, J. Rodel, J. Appl. Phys. 106, 034109 (2009)

    Article  Google Scholar 

  15. H.J. Kang, J. Chen, L.J. Liu, C.Z. Hu, L. Fang, X.R. Xing, Inorg. Chem. Commun. 31, 66 (2013)

    Article  Google Scholar 

  16. S.L. Jiang, Z.J. Zhu, L. Zhang, X. Xiong, J.Q. Yi, Y.K. Zeng, W. Liu, Q. Wang, K. Han, G.Z. Zhang, Mater. Sci. Eng. B 179, 36 (2014)

    Article  Google Scholar 

  17. L.D. Liu, R.Z. Zuo, Q. Sun, Q. Liang, J. Sol-Gel Sci. Technol. 65, 384 (2013)

    Article  Google Scholar 

  18. D.M. Stein, I. Grinberg, A.M. Rappe, P.K. Davies, J. Appl. Phys. 110, (2011)

  19. Z.H. Yao, H.X. Liu, H. Hao, M.H. Cao, J. Appl. Phys. 109, 014105 (2011)

    Article  Google Scholar 

  20. T.L. Zhao, J. Chen, C.M. Wang, Y. Yu, S. Dong, J. Appl. Phys. 114, 027014 (2013)

    Article  Google Scholar 

  21. S. Zhang, Y. Yu, J. Wu, X. Gao, C. Huang, S. Dong, J. Alloys Compd. 731, 1140 (2018)

    Article  Google Scholar 

  22. J.G. Chen, Y.J. Dong, J.R. Cheng, Ceram. Int. 41, 9828 (2015)

    Article  Google Scholar 

  23. X. Meng, Q. Chen, H. Fu, H. Liu, J. Zhu, J. Mater. Sci.:Mater. Electron. 29, 12785 (2018)

    Google Scholar 

  24. T.-L. Zhao, C.-M. Wang, J. Chen, C.-L. Wang, S. Dong, J. Mater. Sci.:Mater. Electron. 27, 606 (2015)

    Google Scholar 

  25. Y. Lin, L. Zhang, J. Yu, J. Mater. Sci.:Mater. Electron. 27, 1955 (2016)

    Google Scholar 

  26. X. Qi, E. Sun, J. Wang, R. Zhang, Y. Bin, W. Cao, Ceram. Int. 42, 15332 (2016)

    Article  Google Scholar 

  27. Y.X. Yan, Y.H. Xu, H.L. He, Y.J. Feng, Mater. Res. Innov. 19, 113 (2015)

    Article  Google Scholar 

  28. C. Jianguo, H. Zhongqiang, S. Huaduo, L. Meiya, D. Shuxiang, J. Phys. D 45, 465303 (2012)

    Article  Google Scholar 

  29. Z.-P. Cao, C.-M. Wang, K. Lau, Q. Wang, Q.-W. Fu, H.-H. Tian, D.-F. Yin, Ceram. Int. 42, 11619 (2016)

    Article  Google Scholar 

  30. R.D. Shannon, C.T. Prewitt, Acta Cryst. B 25, 925 (1969)

    Article  Google Scholar 

  31. T.-L. Zhao, C.-M. Wang, C.-L. Wang, Y.-M. Wang, S. Dong, Mater. Sci. Eng B 201, 51 (2015)

    Article  Google Scholar 

  32. Z.-Y. Shen, W.-Q. Luo, Y. Tang, S. Zhang, Y. Li, Ceram. Int. 42, 7868 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant Nos. XJS17026, JBX171106), the National Natural Science Foundations of China (Grant No. 51802242), and the 111 Project (No. B12026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianying Dai or Shuxiang Dong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhao, TL., Dai, X. et al. Conductive mechanism and the enhancement high-power electrical properties of Mn-modified Bi(Sc3/4In1/4)O3–PbTiO3–Pb(Mg1/3Nb2/3)O3 high temperature piezoelectric ceramics. J Mater Sci: Mater Electron 30, 7780–7786 (2019). https://doi.org/10.1007/s10854-019-01093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01093-7

Navigation