Skip to main content
Log in

Ultra-low temperature co-fired CaV2O6-glass composite ceramic substrate for microelectronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bivalent calcium metavanadate (CaV2O6) ceramic-glass composite substrates were fabricated using non-aqueous environmental friendly tape casting formulation. 3 wt% of commercial glass was added to the calcined powder of CaV2O6 to achieve a sintering temperature of 650 °C which enables ultra-low temperature co-firing with aluminum electrode. An environmentally benign binder/solvent (Polypropylene carbonate/dimethyl carbonate) system was adopted to prepare the well dispersed slurry for tape casting. The crystal structure and co-fireability of the sintered substrate with Al was verified by X-ray diffraction technique. Thermal, dielectric and morphological analysis of the multilayer were analyzed. The room temperature thermal conductivity of CaV2O6-glass composite sintered at 650 °C is about 2.8 W/m K. Sintered ceramics shows a relatively high linear coefficient of thermal expansion (CTE) of 11.46 ppm/°C, which is favorable for co-firing with high CTE metallic materials. Microwave dielectric properties of CaV2O6-glass composite multilayer fired at 650 °C are εr = 10.6 and tanδ = 3.19 × 10−4 at 15 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Li, Y. Xie, Ru Xie, D. Chen, H. Zhang, J. Alloys Compd. 737, 144–151 (2018)

    Article  Google Scholar 

  2. M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Oxford, 2008), pp. 445–465

    Book  Google Scholar 

  3. P. Abhilash, D. Thomas, K.P. Surendran, M.T. Sebastian, J. Am. Ceram. Soc. 96, 1533–1537 (2013)

    Article  Google Scholar 

  4. L.X. Pang, D. Zhou, W.B. Li, Z.X. Yue, J. Eur. Ceram. Soc. 37, 3073–3077 (2017)

    Article  Google Scholar 

  5. G. Subodh, R. Ratheesh, M.V. Jacob, M.T. Sebastian, J. Mater. Res. 23, 1551–1556 (2008)

    Article  Google Scholar 

  6. Z. Di, P. Li-Xia, Q. Ze-Ming, J. Biao-Bing, Y. Xi, Sci. Rep. 4, 5980 (2014)

    Article  Google Scholar 

  7. D. Zhou, C.A. Randall, H. Wang, L.-X. Pang, X. Yao, J. Am. Ceram. Soc. 93, 1096–1100 (2010)

    Article  Google Scholar 

  8. D. Zhou, D. Guo, W.-B. Li, L.-X. Pang, X. Yao, D.-W. Wang, I.M. Reaney, J. Mater. Chem. C 4, 5357–5362 (2016)

    Article  Google Scholar 

  9. E.K. Suresh, A.N. Unnimaya, A. Surjith, R. Ratheesh, Ceram. Int. 39, 3635–3639 (2013)

    Article  Google Scholar 

  10. H. Xiang, C. Li, Y. Tang, L. Fang, J. Eur. Ceram. Soc. 37, 3959–3963 (2017)

    Article  Google Scholar 

  11. E.K. Suresh, K. Prasad, N.S. Arun, R. Ratheesh, J. Electron. Mater. 45, 2996–3002 (2016)

    Article  Google Scholar 

  12. U.A. Neelakantan, S.E. Kalathil, R. Ratheesh, Eur. J. Inorg. Chem. 2, 305–310 (2015)

    Article  Google Scholar 

  13. G.-G. Yao, C.-J. Pei, J.G. Xu, P. Liu, J.-P. Zhou, H.-W. Zhang, J. Mater. Sci. Mater. Electron. 26, 7719–7722 (2015)

    Article  Google Scholar 

  14. S.E. Kalathil, U.A. Neelakantan, R. Ratheesh, J. Am. Ceram. Soc. 97, 1530–1533 (2014)

    Article  Google Scholar 

  15. A.C. Ali, E. Suvaci, H. Mandal, J. Eur. Ceram. Soc. 31, 167–173 (2011)

    Article  Google Scholar 

  16. M. Michálek, G. Blugan, T. Graule, J. Kuebler, Powder Technol. 274, 276–283 (2015)

    Article  Google Scholar 

  17. A. Kristoffersson, E. Carlström, J. Eur. Ceram. Soc. 17, 289–297 (1997)

    Article  Google Scholar 

  18. S. Arun, C.H. Kim, C.H. Lee, M.T. Sebastian, H.T. Kim, ACS Sustain. Chem. Eng. 6, 6849–6855 (2018)

    Article  Google Scholar 

  19. M. Ma, Y. Yang, D. Liao, P. Lyu, J. Zhang, J. Liang, L. Zhang, Appl. Organomet. Chem. 33, e4708 (2018)

    Article  Google Scholar 

  20. J. Honkamo, H. Jantunen, G. Subodh, M.T. Sebastian, P. Mohanan, Int. J. Appl. Ceram. Technol. 6, 531–536 (2009)

    Article  Google Scholar 

  21. H. Yu, K. Ju, J. Liu, Y. Li, J. Mater. Sci. Mater. Electron. 25, 5114–5118 (2014)

    Article  Google Scholar 

  22. T.I. Krasnenko, O.A. Zabara, L.V. Zolotukhina, A.A. Fotiev, J. Phys. Chem. Solids 60, 645–650 (1999)

    Article  Google Scholar 

  23. E.J. Baran, C.I. Cabello, A.G. Nordt, J. Raman Spectrosc. 18, 405–407 (1987)

    Article  Google Scholar 

  24. G. Perez, B. Frit, J.C. Bouloux, J. Galy, C. R. Acad. Sci., Ser. C. 270, 952–953 (1970)

    Google Scholar 

  25. J.C. Bouloux, G. Perez, J. Galy, Bull. Soc. Fr. Mineral. Crystallogr. 95, 130–133 (1972)

    Google Scholar 

  26. M. Schmidt, H. Münstedt, M. Svec, A. Roosen, T. Betz, F. Koppe, J. Am. Ceram. Soc. 85, 314–320 (2004)

    Article  Google Scholar 

  27. Y.T. Chou, Y.T. Ko, M.F. Yan, J. Am. Ceram. Soc. 70, C-280–C-282 (1987)

    Article  Google Scholar 

  28. A.I.Y. Tok, F.Y.C. Boey, Y.C. Lam, Mater. Sci. Eng. A. 280, 282–288 (2000)

    Article  Google Scholar 

  29. A. Feng, G. Wu, Y. Wang, C. Pan, J. Nanosci. Nanotechnol. 17, 3859–3863 (2017)

    Article  Google Scholar 

  30. M. Cai, J. Zhu, C. Yang, R. Gao, C. Shi, J. Zhao, Polymers 11, 185 (2019)

    Article  Google Scholar 

  31. J. Li, J. Ma, S. Chen, J. He, Y. Huang, Food Hydrocoll. 82, 363–369 (2018)

    Article  Google Scholar 

  32. H. Yan, W.R. Cannon, D.J. Shanefield, Ceram. Int. 24, 433–439 (1998)

    Article  Google Scholar 

  33. H. Yan, W.R. Cannon, D.J. Shanefield, J. Am. Ceram. Soc. 76, 166–172 (1993)

    Article  Google Scholar 

  34. G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Appl. Surf. Sci. 464, 472–478 (2018)

    Article  Google Scholar 

  35. M. Ma, Y. Yang, W. Li, R. Feng, Z. Li, P. Lyu, Y. Ma, J. Mater. Sci. 54, 323–334 (2019)

    Article  Google Scholar 

  36. S. Masia, P.D. Calvert, W.E. Rhine, H.K. Bowen, J. Mater. Sci. 24, 1907–1912 (1989)

    Article  Google Scholar 

  37. S.M. Shapee, R. Alias, I. Azmi, Z. Ambak, Z.M. Yusoff, M.R. Saad, Key Eng. Mater. 421–422, 485–489 (2009)

    Article  Google Scholar 

  38. S.E. Fritz, T.W. Kelley, C.D. Frisbie, J. Phys. Chem. B. 109, 10574–10577 (2005)

    Article  Google Scholar 

  39. D. Monika, N. Suri, P.K. Khanna, Int. J. Res. Eng. Technol. 2, 441–444 (2013)

    Google Scholar 

  40. Y. Gong, W. Deng, W. Zhang, C. Yatongchai, Y. Zou, R.C. Buchanan, Ceram. Int. 41, 671–680 (2015)

    Article  Google Scholar 

  41. G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, J. Colloid Interface Sci. 536, 548–555 (2019)

    Article  Google Scholar 

  42. T. Wu, Y. Pu, T. Zong, P. Gao, J. Alloys Compd. 584, 461–465 (2014)

    Article  Google Scholar 

  43. R.K. Bhuyan, T.S. Kumar, D. Pamu, Ferroelectrics 516, 173–184 (2017)

    Article  Google Scholar 

  44. T. Welker, S. Günschmann, N. Gutzeit, J. Müller, J. Ceram. Sci. Technol. 6, 301–304 (2015)

    Google Scholar 

  45. M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57–90 (2008)

    Article  Google Scholar 

  46. S. Arun, M.T. Sebastian, K.P. Surendran, Ceram. Int. 43, 5509–5516 (2017)

    Article  Google Scholar 

  47. M. Ma, Z. Liu, Y. Li, Y. Zeng, D. Yao, Ceram. Int. 39, 4683–4687 (2013)

    Article  Google Scholar 

  48. S. Wang, D. Zhang, X. Ouyang, Y. Wang, G. Liu, J. Alloys Compd. 667, 23–28 (2016)

    Article  Google Scholar 

  49. J. Kita, A. Engelbrecht, F. Schubert, A. Groß, F. Rettig, R. Moos, Sens. Actuators B 213, 541–546 (2015)

    Article  Google Scholar 

  50. R.C. Keller, R.O. Pohl, Phys. Rev. B 4, 2029–2041 (1971)

    Article  Google Scholar 

  51. R. Zhang, T.R. Wei, B.P. Zhang, K. Wang, D. Ichigozaki, J.F. Li, J. Alloys Compd. 646, 298–302 (2015)

    Article  Google Scholar 

  52. W.D. Kingery, J. Am. Ceram. Soc. 38, 251–255 (1955)

    Article  Google Scholar 

  53. S.B. Roshni, M.T. Sebastian, K.P. Surendran, Sci. Rep. 7, 40839 (2017)

    Article  Google Scholar 

  54. M. Eberstein, C. Glitzky, M. Gemeinert, T. Rabe, W.A. Schiller, C. Modes, Int. J. Appl. Ceram. Technol. 6, 1–8 (2009)

    Article  Google Scholar 

  55. L. Chen, P. Wu, P. Song, J. Feng, Ceram. Int. 44, 16273–16281 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from the brain pool program by KOFST (Grant No. 171S-2-1-1853, 2017) and ceramic strategic technology development program by KICET (Grant No. KPP17004-2, 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo Tae Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasidharanpillai, A., Thomas, S.M., Lee, Y. et al. Ultra-low temperature co-fired CaV2O6-glass composite ceramic substrate for microelectronics. J Mater Sci: Mater Electron 30, 7637–7644 (2019). https://doi.org/10.1007/s10854-019-01079-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01079-5

Navigation