Skip to main content
Log in

High-resistance voltage dividers fabricated by thin polysilicon films in silicon drift detectors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper we propose a method of fabricating high-resistance voltage dividers by thin polysilicon films and apply it in silicon drift detectors. Amorphous silicon films are firstly deposited on oxide layers by atmospheric pressure chemical vapor deposition (APCVD), and then the films are doped by boron implantation and post annealing. Deposition time and annealing temperature are two key parameters used to adjust the sheet resistance of the polysilicon films. By changing the deposition time and annealing temperature, a large sheet resistance value range from 2.5 to 36.5 kΩ/□ is achieved and it is very convenient to adjust the sheet resistance precisely by controlling these two parameters. In addition to that, the polysilicon resistors have very low temperature coefficients and resistance values remain unchanged until the largest voltage of 200 V that the equipment can apply. The width of the polysilicon film strips can reach 2 µm and the uniformity of the polysilicon films is 6.14% on the whole 2 in. wafer, which makes polysilicon films very suitable for fabricating high-resistance voltage dividers in silicon drift detectors. Beyond that, the ion implantation and annealing process can be used to dope the silicon films and fabricate the drift rings at the same time, which significantly simplify the fabrication of the silicon drift detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E. Gatti, P. Rehak, Semiconductor drift chamber-an application of a novel charge transport scheme. Nucl. Instrum. Method 225, 608 (1984)

    Article  Google Scholar 

  2. P. Rehak, E. Gatti, A. Longoni, J. Kemmer, P. Holl, R. Klanner et al., A semiconductor drift chambers for position and energy measurement. Nucl. Instrum. Method A 235, 224 (1985)

    Article  Google Scholar 

  3. P. Rehak, J. Walton, E. Gatti, A. Longoni, M. Sanpietro, J. Kemmer et al., Progress in semiconductor drift detectors. Nucl. Instrum. Method A 248, 367 (1986)

    Article  Google Scholar 

  4. M.T. Tung, Semiconductor resistor for withstanding high voltages. US Patent 6,023,092, 19 April 1999

  5. J.P. Neuz, G. Lebesnerais, Breakdown voltage resistor obtained through a double ion-implantation into a semiconductor substrate, and manufacturing process of the same. US Patent 4,298,401, 19 Nov 1979

  6. N. Sadeghi, S.A. Mirabbasi, Technique for implementing monolithic resistors with near-zero temperature coefficient. In IEEE CCECE, p. 1292 (2011)

  7. N. Golshani, J. Derakhshandeh, C.I.M. Beenakker, R. Ishihara, High-ohmic resistors fabricated by PureB layer for silicon drift detectors applications. Solid State Electron. 105, 6 (2015)

    Article  Google Scholar 

  8. S.M. Ku, Boron-implanted silicon resistors. Solid State Electron. 20, 803 (1977)

    Article  Google Scholar 

  9. J. Ninkovic, L. Andricek, C. Jendrisyk, G. Liemann, G. Lutz, H.G. Moser et al., The first measurements on SiPMs with bulk integrated quench resistors. Nucl. Instrum. Methods A 628, 407 (2011)

    Article  Google Scholar 

  10. J. Kemmera, F. Wiesta, A. Pahlkea, O. Boslaua, P. Goldstrassa, T. Eggerta et al., Epitaxy-a new technology for fabrication of advanced silicon radiation detectors. Nucl. Instrum. Method A 544, 612–619 (2005)

    Article  Google Scholar 

  11. N. Golshani, C.I.M. Beenakker, R. Ishihara, Manufacturing uniform field silicon drift detector using double boron layer. Nucl. Instrum. Method A 794, 206–214 (2015)

    Article  Google Scholar 

  12. T. Kneževi´c, L.K. Nanver, T. Suligoj, Silicon drift detectors with the drift field induced by PureB-coated trenches. Photonics 3(54), 1–18 (2016)

    Google Scholar 

  13. D.M. Kim, A.N. Khondker, S.S. Ahmed, R.R. Shah, Theory of conduction in polysilicon: Drift-diffusion approach in crystalline-amorphous-crystalline semiconductor system—Part I: small signal theory. IEEE Trans. Electron. Dev. 31, 480 (1984)

    Article  Google Scholar 

  14. Y.S. Ho, Y.L. Hsu, C.C. Lan, Y.J. Tsai, C.W. Chen, S.R. Horng et al., Mis-matching characteristics study of P+-poly-silicon resistor in newly CMOS process technology. In IEEE Conference on Electron Devices and Solid-State Circuits, p. 1133 (2007)

  15. Q. Wang, W.M. Zhang, R. Hu, D.H. Ge, N.F. Ren, Structure disorder degree of polysilicon thin films grown by different processing: constant C from Raman spectroscopy. J. Appl. Phys. 144, 183504 (2013)

    Article  Google Scholar 

  16. A.A. Kovalevskii, A.V. Dolbik, S.N. Voitekh, Effect of doping on the temperature coefficient of resistance of polysilicon films. Russ. Microlectron. 36, 153 (2007)

    Article  Google Scholar 

  17. A.B. Sproul, M.A. Green, Intrinsic carrier concentration and minority-carrier mobility of silicon from 77 to 300 K. J. Appl. Phys. 73, 1214 (1993)

    Article  Google Scholar 

  18. A. Rashevskya, V. Bonvicinia, P. Burgerb, S. Pianoa, C. Piemontea, A. Vacchia, Large area silicon drift detector for the ALICE experiment. Nucl. Instrum. Method A 485, 54 (2002)

    Article  Google Scholar 

  19. A. Castoldl, R. Rehak, R. Hollc, A new silicon drift detector with reduced lateral diffusion. Nucl. Instrum. Method A 377, 375 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Project of Beijing Municipal Science and Technology Commission (Grant No. Z151100003515003) and National Natural Science Foundation of China (Grant Nos.110751402347, 61274059, 51702355, 51602340, and 61674167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Jia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Jia, R., Tao, K. et al. High-resistance voltage dividers fabricated by thin polysilicon films in silicon drift detectors. J Mater Sci: Mater Electron 30, 6617–6627 (2019). https://doi.org/10.1007/s10854-019-00969-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00969-y

Navigation