Skip to main content
Log in

Effects of Ca2+ substitution on microstructure and microwave dielectric properties of low loss Ba(Mg1/3Nb2/3)O3 perovskite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ba1−xCax(Mg1/3Nb2/3)O3 (0 ≤ x ≤ 0.02) perovskite ceramics were prepared by the solid-state reaction method. The phase composition and microstructure were characterized by XRD and SEM, respectively. The result showed that all ceramics exhibited the 1:2 ordered perovskite structure, and the grain size decreased first and then increased with different substitution amount of Ca2+ for Ba2+. The dielectric properties were examined by Vector network analyzer, and the Raman spectra was used to interpret the dielectric properties of Ba1−xCax(Mg1/3Nb2/3)O3 ceramics. The dielectric constant (εr) were strongly depended on the Raman shift of A1g(O) stretch mode, and the quality factor (Q × f) manifested great correlated with the full width at half maxima (FWHM) of A1g(O) stretch mode. The Ba1−xCax(Mg1/3Nb2/3)O3 ceramics substituted of Ca2+ for Ba2+ in x = 0.005, which possessed the narrowest FWHM and the highest degree of 1:2 ordering, showed the best microwave dielectric properties: εr = 31.64, Q × f = 74421 GHz, τf = 14.59 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.F. Cheng, C.T. Chia et al., Correlation of the phonon characteristics and microwave dielectric properties of the Ba(Mg1/3Ta2/3)O3 materials. J. Eur. Ceram. Soc. 27(8), 2893–2897 (2007)

    Article  Google Scholar 

  2. S. Manivannan, A. Joseph, P.K. Sharma et al., Effect of microwave and conventional sintering on densification, microstructure and dielectric properties of BZT-xCr2O3 ceramics. Ceram. Int. 41(9), 10923–10933 (2015)

    Article  Google Scholar 

  3. Y.W. Kim, J.H. Park, J.G. Park, Local cationic ordering behavior in Ba(Mg1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc. 24(6), 1775–1779 (2004)

    Article  Google Scholar 

  4. C.T. Chia, Y.C. Chen, H.F. Cheng et al., Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3−(1−x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy. J. Appl. Phys. 94(5), 3360–3364 (2003)

    Article  Google Scholar 

  5. P.F. Ning, L.X. Li, P. Zhang et al., Raman scattering, electronic structure and microwave dielectric properties of Ba([Mg1−xZnx]1/3Ta2/3)O3 ceramics. Ceram. Int. 38(2), 1391–1398 (2012)

    Article  Google Scholar 

  6. S. Nomura, Ceramics for microwave dielectric resonator. Ferroelectrics 49(1), 61–70 (1983)

    Article  Google Scholar 

  7. H. Tamura, T. Konoike, Y. Sakabe et al., Improved high-Q dielectric resonator with complex perovskite structure. J. Am. Ceram. Soc. 67(4), c59–c61 (1984)

    Article  Google Scholar 

  8. H.J. Lee, H.M. Park, H. Ryu et al., Microstructural changes in lanthanum-doped barium magnesium niobate. J. Am. Ceram. Soc. 82(9), 2529–2537 (1999)

    Article  Google Scholar 

  9. M.A. Akbas et al., Structure and dielectric properties of the Ba(Mg1/3Nb2/3)O3-La(Mg2/3Nb1/3)O3 system. J. Am. Ceram. Soc. 8(8), 2205–2208 (2010)

    Article  Google Scholar 

  10. H. Zhang, C. Diao, S. Liu et al., XRD and Raman study on crystal structures and dielectric properties of Ba[Mg(1–x)/3ZrxNb2(1–x)/3]O3 solid solutions. Ceram. Int. 40(1), 2427–2434 (2014)

    Article  Google Scholar 

  11. Z.Q. Tian, H.X. Liu, H.T. Yu et al., Effect of BaWO4 on microstructure microwave dielectric properties of Ba(Mg1/3Nb2/3)O3. Mater. Chem. Phys. 86(1), 228–232 (2004)

    Article  Google Scholar 

  12. Y. Bisht, R. Tomar, P. Abhilash et al., Microwave dielectrics: solid solution, ordering and microwave dielectric properties of (1 − x)Ba(Mg1/3Nb2/3)O3-xBa(Mg1/8Nb3/4)O3 ceramics. Bull. Mater. Sci. 40(6), 1165–1170 (2017)

    Article  Google Scholar 

  13. C.T. Lee, Y.C. Lin, C.Y. Huang, C.Y. Su, C.L. Hu, Cation ordering and dielectric characteristics in barium zinc niobate. J. Am. Ceram. Soc. 90(2), 483–489 (2007)

    Article  Google Scholar 

  14. M. Bieringer, S.M. Moussa, L.D. Noailles et al., Cation ordering, domain growth, and zinc loss in the microwave dielectric oxide Ba3ZnTa2O9–δ. Chem. Mater. 15(2), 586–597 (2003)

    Article  Google Scholar 

  15. Y. Yang, R. Fu, S. Agathopoulos et al., Influence of the processing way for La3+-doping on crystal structure, microstructure, and microwave dielectric properties of Ca0.7Ti0.7La0.3Al0.3O3 ceramics. Ceram. Int. 42(16), 18108–18115 (2016)

    Article  Google Scholar 

  16. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. 8(4), 402–410 (1960)

    Article  Google Scholar 

  17. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microw. Theory Tech 18(8), 476–485 (1970)

    Article  Google Scholar 

  18. M.S. Fu, X.Q. Liu, X.M. Chen, Y.W. Zeng, Effects of Mg substitution on microstructures and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 perovskite ceramics. J. Am. Ceram. Soc. 93(3), 787–795 (2010)

    Article  Google Scholar 

  19. Y.X. Shi, J. Shen, J. Zhou et al., Structure and optical properties of Sn4+ doped Ba(Mg1/3Nb2/3)O3 transparent ceramics. Ceram. Int. 41, 253–257 (2015)

    Article  Google Scholar 

  20. S. Nomura, The effect of Mg deficiency on the microwave dielectric properties of Ba(Mg1/3Nb2/3)O3 ceramics. J. Mater. Sci. Lett. 17(20), 1777–1780 (1998)

    Article  Google Scholar 

  21. B.K. Kim, H.O. Hamaguchi, I.T. Kim et al., Probing of 1:2 ordering in Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 ceramics by XRD and Raman spectroscopy. J. Am. Ceram. Soc. 78(11), 3117–3120 (1995)

    Article  Google Scholar 

  22. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(1), 751–767 (1976)

    Article  Google Scholar 

  23. P.P. Ma, H. Gu, X.M. Chen, Evaluation of the 1:2 ordered structure of Ba(B′1/3B′′2/3)O3 perovskites along various zone axes using transmission electron microscopy. J. Mater. Chem. C 3(41), 10755–10760 (2015)

    Article  Google Scholar 

  24. J.F. Li, A. Kawasaki, R. Watanabe, Hot isostatically pressed SiC-AlN powder mixtures: effect of milling on solid-solution formation and related properties. J. Am. Ceram. Soc. 81(6), 1445–1452 (2005)

    Article  Google Scholar 

  25. H.J. Lee, H.M. Park, K.C. Yang et al., Microstructural observations in barium calcium magnesium niobate. J. Am. Ceram. Soc. 83(9), 2267–2272 (2010)

    Article  Google Scholar 

  26. I.G. Siny, R.W. Tao, R.S. Katiyar et al., Raman spectroscopy of Mg-Ta order-disorder in Ba(Mg1/3Ta2/3)O3. J. Phys. Chem. Solids 59(2), 181–195 (1998)

    Article  Google Scholar 

  27. Z. Wang, B. Huang, L. Wang et al., Low loss (Ba1–xSrx)(Co1/3Nb2/3)O3 solid solution: phase evolution, microstructure and microwave dielectric properties. J. Mater. Sci. Mater. Electron. 26(6), 4273–4279 (2015)

    Article  Google Scholar 

  28. C.T. Lee, C.Y. Huang, Y.C. Lin et al., Structural and dielectric characteristics in a Ca(Mg1/3Nb2/3)O3-CaZrO3 system. J. Am. Ceram. Soc. 90(10), 3148–3155 (2007)

    Article  Google Scholar 

  29. Q. Liao, Y. Wang, J. Feng et al., Ultra-low fire glass-free Li3FeMo3O12 microwave dielectric ceramics. J. Am. Ceram. Soc. 97(8), 2394–2396 (2014)

    Article  Google Scholar 

  30. M.Y. Chen, C.T. Chia, I.N. Lin et al., Microwave properties of Ba(Mg1/3Ta2/3)O3, Ba(Mg1/3Nb2/3)O3 and Ba(Co1/3Nb2/3)O3 ceramics revealed by Raman scattering. J. Eur. Ceram. Soc. 26(10–11), 1965–1968 (2006)

    Article  Google Scholar 

  31. H.J. Lee, H.M. Park, Y.W. Song et al., Microstructure and dielectric properties of barium strontium magnesium niobate. J. Am. Ceram. Soc. 84(9), 2105–2110 (2001)

    Article  Google Scholar 

  32. J.H. Paik, S.K. Kim, M.J. Lee et al., Ordering structure of barium magnesium niobate ceramic with A-site substitution. J. Eur. Ceram. Soc. 26(14), 2885–2888 (2006)

    Article  Google Scholar 

  33. E.L. Colla, I.M. Reaney et al., Effect of structural-changes in complex perovskites on the temperature-coefficient of the relative permittivity. J. Appl. Phys. 74(5), 3414–3425 (1993)

    Article  Google Scholar 

  34. E.L. Colla, I.M. Reaney, N. Setter, The temperature coefficient of the relative permittivity of complex perovskites and its relation to structural transformations. Ferroelectrics 133(1), 217–222 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Projects of Jiangsu Province (BE2016050) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Nanjing, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renli Fu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Fu, R., Liu, H. et al. Effects of Ca2+ substitution on microstructure and microwave dielectric properties of low loss Ba(Mg1/3Nb2/3)O3 perovskite ceramics. J Mater Sci: Mater Electron 30, 5726–5732 (2019). https://doi.org/10.1007/s10854-019-00866-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00866-4

Navigation