Skip to main content

Advertisement

Log in

Growth of MoS2 nanosheets on TiO2/g-C3N4 nanocomposites to enhance the visible-light photocatalytic ability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2/g-C3N4/MoS2 nanocomposite photocatalysts were synthesized via two-steps in situ solvothermal method. The nanocomposites exhibit an extended visible-light photoresponse, higher efficiency of charge carriers separation, and improved photocatalytic degradation of methylene blue (MB). TiO2/g-C3N4/MoS2 nanoparticles enjoys much higher degradation ratio (95%) under visible light illumination for 30 min than P25 (63%), TiO2/g-C3N4 (45%) and TiO2 (26%). The heterojunctions of TiO2/g-C3N4 and TiO2/MoS2 play a main role in the enhanced photocatalytic performance. The electrons generated in MoS2 and g-C3N4 under visible light migrate to the conduction band of TiO2 to degrade MB dye. The heterojunctions can enhance the separation of photogenerated electron–hole pairs and improve the utilization of photons. This work demonstrates that synergetic effect of g-C3N4 and MoS2, which is a good choice to improve the utilization of visible light of TiO2-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.P. Claus, H. Guillou, S. Ellero-Simatos, The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2, 16003 (2016)

    Article  Google Scholar 

  2. S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J Environ Sci 65, 201–222 (2018)

    Article  Google Scholar 

  3. A.A. Markus, J.R. Parsons, E.W.M. Roex, P. de Voogt, R.W.P.M. Laane, Modeling aggregation and sedimentation of nanoparticles in the aquatic environment. Sci. Total Environ. 506–507, 323–329 (2015)

    Article  Google Scholar 

  4. S. Baccella, G. Cerichelli, M. Chiarini, C. Ercole, E. Fantauzzi, A. Lepidi, L. Toro, F. Vegliò, Biological treatment of alkaline industrial waste waters. Process. Biochem. 35, 595–602 (2000)

    Article  Google Scholar 

  5. S.G. Ullattil, S.B. Narendranath, S.C. Pillai, P. Periyat, Black TiO2 nanomaterials: a review of recent advances. Chem. Eng. J. 343, 708–736 (2018)

    Article  Google Scholar 

  6. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014)

    Article  Google Scholar 

  7. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  Google Scholar 

  8. Z. Zhao, J. Tian, Y. Sang, A. Cabot, H. Liu, Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 27, 2557–2582 (2015)

    Article  Google Scholar 

  9. K. Wenderich, G. Mul, Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem. Rev. 116, 14587–14619 (2016)

    Article  Google Scholar 

  10. H. Bian, N.T. Nguyen, J. Yoo, S. Hejazi, S. Mohajernia, J. Müller, E. Spiecker, H. Tsuchiya, O. Tomanec, B.E. Sanabria-Arenas, R. Zboril, Y.Y. Li, P. Schmuki, Forming a highly active, homogeneously alloyed AuPt co-catalyst decoration on TiO2 nanotubes directly during anodic growth. ACS Appl. Mater. Interfaces 10, 18220–18226 (2018)

    Article  Google Scholar 

  11. Y. Shiraishi, N. Yasumoto, J. Imai, H. Sakamoto, S. Tanaka, S. Ichikawa, B. Ohtani, T. Hirai, Quantum tunneling injection of hot electrons in Au/TiO2 plasmonic photocatalysts. Nanoscale 9, 8349–8361 (2017)

    Article  Google Scholar 

  12. X.-H. Jiang, Q.-J. Xing, X.-B. Luo, F. Li, J.-P. Zou, S.-S. Liu, X. Li, X.-K. Wang, Simultaneous photoreduction of Uranium(VI) and photooxidation of arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl. Catal. B 228, 29–38 (2018)

    Article  Google Scholar 

  13. L. Kong, C. Wang, H. Zheng, X. Zhang, Y. Liu, Defect-induced yellow color in Nb-doped TiO2 and its impact on visible-light photocatalysis. J. Phys. Chem. C 119, 16623–16632 (2015)

    Article  Google Scholar 

  14. X. Zhang, T. Peng, S. Song, Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J. Mater. Chem. A 4, 2365–2402 (2016)

    Article  Google Scholar 

  15. N. Sarvari, M.R. Mohammadi, Enhanced electron collection efficiency of nanostructured dye-sensitized solar cells by incorporating TiO2 cubes. J. Am. Ceram. Soc. 101, 293–306 (2018)

    Article  Google Scholar 

  16. Z.-Q. Guo, J.-P. Zhou, L.-L. An, J.-X. Jiang, G.-Q. Zhu, C.-Y. Deng, A new-type of semiconductor Na0.9Mg0.45Ti3.55O8: preparation, characterization and photocatalysis. J. Mater. Chem. A 2, 20358–20366 (2014)

    Article  Google Scholar 

  17. G.F. Samu, Á Veres, B. Endrődi, E. Varga, K. Rajeshwar, C. Janáky, Bandgap-engineered quaternary MxBi2–xTi2O7 (M: Fe, Mn) semiconductor nanoparticles: Solution combustion synthesis, characterization, and photocatalysis. Appl. Catal. B 208, 148–160 (2017)

    Article  Google Scholar 

  18. Z.-Q. Guo, N.-X. Miao, J.-P. Zhou, Y.-X. Lei, Q.U. Hassan, M.-M. Zhou, Novel magnetic semiconductor Na2Fe2Ti6O16: synthesis, double absorption and strong adsorptive ability. J. Mater. Chem. A 5, 17589–17600 (2017)

    Article  Google Scholar 

  19. P. Fernández-Ibáñez, M.I. Polo-López, S. Malato, S. Wadhwa, J.W.J. Hamilton, P.S.M. Dunlop, R. D’Sa, E. Magee, K. O’Shea, D.D. Dionysiou, J.A. Byrne, Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem. Eng. J. 261, 36–44 (2015)

    Article  Google Scholar 

  20. X. Niu, W. Yan, H. Zhao, J. Yang, Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity. Appl. Surf. Sci. 440, 804–813 (2018)

    Article  Google Scholar 

  21. L. Shen, Z. Xing, J. Zou, Z. Li, X. Wu, Y. Zhang, Q. Zhu, S. Yang, W. Zhou, Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions with efficient visible-light-driven photocatalytic performance. Sci. Rep. UK 7, 41978 (2017)

    Article  Google Scholar 

  22. H. Wei, W.A. McMaster, J.Z.Y. Tan, D. Chen, R.A. Caruso, Tricomponent brookite/anatase TiO2/g-C3N4 heterojunction in mesoporous hollow microspheres for enhanced visible-light photocatalysis. J. Mater. Chem. A 6, 7236–7245 (2018)

    Article  Google Scholar 

  23. H. Wei, W.A. McMaster, J.Z.Y. Tan, L. Cao, D. Chen, R.A. Caruso, Mesoporous TiO2/g-C3N4 microspheres with enhanced visible-light photocatalytic activity. J. Phys. Chem. C 121, 22114–22122 (2017)

    Article  Google Scholar 

  24. G. Zhang, T. Zhang, B. Li, S. Jiang, X. Zhang, L. Hai, X. Chen, W. Wu, An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: in situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method. Appl. Surf. Sci. 433, 963–974 (2018)

    Article  Google Scholar 

  25. S. Luan, D. Qu, L. An, W. Jiang, X. Gao, S. Hua, X. Miao, Y. Wen, Z. Sun, Enhancing photocatalytic performance by constructing ultrafine TiO2 nanorods/g-C3N4 nanosheets heterojunction for water treatment. Sci Bull 63, 683–690 (2018)

    Article  Google Scholar 

  26. P. Kumar, U.K. Thakur, K. Alam, P. Kar, R. Kisslinger, S. Zeng, S. Patel, K. Shankar, Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. Carbon 137, 174–187 (2018)

    Article  Google Scholar 

  27. F. Zhao, Y. Rong, J. Wan, Z. Hu, Z. Peng, B. Wang, MoS2 quantum dots@TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis. Nanotechnology 29, 105403 (2018)

    Article  Google Scholar 

  28. A. Saha, A. Sinhamahapatra, T.H. Kang, S.C. Ghosh, J.S. Yu, A.B. Panda, Hydrogenated MoS2 QD-TiO2 heterojunction mediated efficient solar hydrogen production. Nanoscale 9, 17029–17036 (2017)

    Article  Google Scholar 

  29. W. Zhang, X. Xiao, Y. Li, X. Zeng, L. Zheng, C. Wan, Liquid-exfoliation of layered MoS2 for enhancing photocatalytic activity of TiO2/g-C3N4 photocatalyst and DFT study. Appl. Surf. Sci. 389, 496–506 (2016)

    Article  Google Scholar 

  30. X. Yang, H. Huang, M. Kubota, Z. He, N. Kobayashi, X. Zhou, B. Jin, J. Luo, Synergetic effect of MoS2 and g-C3N4 as cocatalysts for enhanced photocatalytic H2 production activity of TiO2. Mater. Res. Bull. 76, 79–84 (2016)

    Article  Google Scholar 

  31. Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15–37 (2015)

    Article  Google Scholar 

  32. F. Ding, D. Yang, Z. Tong, Y. Nan, Y. Wang, X. Zou, Z. Jiang, Graphitic carbon nitride-based nanocomposites as visible-light driven photocatalysts for environmental purification. Environ. Sci. 4, 1455–1469 (2017)

    Google Scholar 

  33. W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016)

    Article  Google Scholar 

  34. P. Xia, B. Zhu, J. Yu, S. Cao, M. Jaroniec, Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 5, 3230–3238 (2017)

    Article  Google Scholar 

  35. C. Miranda, H. Mansilla, J. Yáñez, S. Obregón, G. Colón, Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method. J. Photochem. Photobiol. A 253, 16–21 (2013)

    Article  Google Scholar 

  36. Z. Xu, C. Zhuang, Z. Zou, J. Wang, X. Xu, T. Peng, Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly. Nano Res. 10, 2193–2209 (2017)

    Article  Google Scholar 

  37. K. Li, B. Peng, J. Jin, L. Zan, T. Peng, Carbon nitride nanodots decorated brookite TiO2 quasi nanocubes for enhanced activity and selectivity of visible-light-driven CO2 reduction. Appl. Catal. B 203, 910–916 (2017)

    Article  Google Scholar 

  38. P. Minhoon, P.Y. Ju, C. Xiang, P. Yon-Kyu, K. Min-Seok, A. Jong-Hyun, MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 28, 2556–2562 (2016)

    Article  Google Scholar 

  39. Y.T. Lee, W.K. Choi, D.K. Hwang, Chemical free device fabrication of two dimensional van der Waals materials based transistors by using one-off stamping. Appl. Phys. Lett. 108, 253105 (2016)

    Article  Google Scholar 

  40. E. Parzinger, B. Miller, B. Blaschke, J.A. Garrido, J.W. Ager, A. Holleitner, U. Wurstbauer, Photocatalytic stability of single- and few-layer MoS2. ACS Nano 9, 11302–11309 (2015)

    Article  Google Scholar 

  41. H.S. Lee, S.-W. Min, Y.-G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012)

    Article  Google Scholar 

  42. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  Google Scholar 

  43. E.S. Kadantsev, P. Hawrylak, Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012)

    Article  Google Scholar 

  44. H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B.K. Tay, C. Xue, X. Hu, S.T. Pantelides, W. Zhou, Z. Liu, MoS2/TiO2 Edge-On Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Adv Energy Mater. 6, 1600464 (2016)

    Article  Google Scholar 

  45. Y.-J. Yuan, Z.-J. Ye, H.-W. Lu, B. Hu, Y.-H. Li, D.-Q. Chen, J.-S. Zhong, Z.-T. Yu, Z.-G. Zou, Constructing Anatase TiO2 Nanosheets with Exposed (001) Facets/Layered MoS2 Two-Dimensional Nanojunctions for Enhanced Solar Hydrogen Generation. ACS Catal. 6, 532–541 (2016)

    Article  Google Scholar 

  46. B. Xue, H.-Y. Jiang, T. Sun, F. Mao, J.-K. Wu, One-step synthesis of MoS2/g-C3N4 nanocomposites with highly enhanced photocatalytic activity. Mater. Lett. 228, 475–478 (2018)

    Article  Google Scholar 

  47. Y.-X. Lei, J.-P. Zhou, Q.U. Hassan, J.-Z. Wang, One-step synthesis of NiTe2 nanorods coated with few-layers MoS2 for enhancing photocatalytic activity. Nanotechnology 28, 495602 (2017)

    Article  Google Scholar 

  48. Y.-X. Lei, J.-Z. Wang, J.-P. Zhou, Z.-Q. Guo, Q.U. Hassan, Fabrication and enhanced photocatalytic properties of novel 3D MoS2/Na0.9Mg0.45Ti3.55O8 heterostructures. Appl. Surf. Sci. 427, 733–741 (2018)

    Article  Google Scholar 

  49. M. Xu, L. Han, S. Dong, Facile Fabrication of Highly Efficient g-C3N4/Ag2O Heterostructured Photocatalysts with Enhanced Visible-Light Photocatalytic Activity. ACS Appl. Mater. Interfaces 5, 12533–12540 (2013)

    Article  Google Scholar 

  50. Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 260, 117–125 (2015)

    Article  Google Scholar 

  51. K.K. Paul, N. Sreekanth, R.K. Biroju, T.N. Narayanan, P.K. Giri, Solar light driven photoelectrocatalytic hydrogen evolution and dye degradation by metal-free few-layer MoS2 nanoflower/TiO2(B) nanobelts heterostructure. Sol. Energ. Mater. Sol. Cells 185, 364–374 (2018)

    Article  Google Scholar 

  52. M. Hu, Z. Xing, Y. Cao, Z. Li, X. Yan, Z. Xiu, T. Zhao, S. Yang, W. Zhou, Ti3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-lightdriven photocatalysts. Appl. Catal. B 226, 499–508 (2018)

    Article  Google Scholar 

  53. T. Saison, N. Chemin, C. Chanéac, O. Durupthy, V. Ruaux, L. Mariey, F. Maugé, P. Beaunier, J.-P. Jolivet, Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light. J. Phys. Chem. C 115, 5657–5666 (2011)

    Article  Google Scholar 

  54. J.M. Buriak, P.V. Kamat, K.S. Schanze, Best practices for reporting on heterogeneous photocatalysis. ACS Appl. Mater. Interfaces 6, 11815–11816 (2014)

    Article  Google Scholar 

  55. L. Ge, C. Han, X. Xiao, L. Guo, Synthesis and characterization of composite visible light active photocatalysts MoS2–g-C3N4 with enhanced hydrogen evolution activity. Int. J. Hydrog. Energy 38, 6960–6969 (2013)

    Article  Google Scholar 

  56. W. Zhang, X. Xiao, Y. Li, X. Zeng, L. Zheng, C. Wan, Liquid exfoliation of layered metal sulphide for enhanced photocatalytic activity of TiO2 nanoclusters and DFT study. RSC Adv. 6, 33705–33712 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grand No. 51672168) and the Fundamental Research Funds for the Central Universities (Nos. GK201901005, 2017CSY003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RZ., Chen, QW., Lei, YX. et al. Growth of MoS2 nanosheets on TiO2/g-C3N4 nanocomposites to enhance the visible-light photocatalytic ability. J Mater Sci: Mater Electron 30, 5393–5403 (2019). https://doi.org/10.1007/s10854-019-00832-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00832-0

Navigation