Skip to main content
Log in

Effect of electroplating parameters on electroplated Cu film and microvoid formation of solder joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influences of electroplating parameters on electroplated Cu (EPC) film and void formation at the Sn3.0Ag0.5Cu (SAC305)/Cu interface were investigated. It is found that the size of Cu particles increased with the increase of current density or deposit thickness. The surface roughness of Cu films also increased with increasing current density. And the surface roughness of EPC films demonstrated decrement at first and then increment with the increase of deposit thickness. It is observed that the electrodeposition with higher current density or thicker Cu film tended to inhibit the growth of Cu(111) and favor the growth of Cu(220). After reflowing and thermal aging, the voiding level increased greatly as the current density and deposit thickness increased, and that total microvoid area increased gradually with increasing aging time for all electroplating conditions. Additionally, the variation in the current density and deposit thickness did not influence the intermetallic compound growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Borgesen, L.A. Yin, P. Kondos, Assessing the risk of “Kirkendall voiding” in Cu3Sn. Microelectron. Reliab. 51, 837–846 (2011)

    Article  CAS  Google Scholar 

  2. L. Yin, P. Borgesen, On the root cause of Kirkendall voiding in Cu3Sn. J. Mater. Res. 26, 455–466 (2011)

    Article  CAS  Google Scholar 

  3. J.Y. Kim, J. Yu, T.Y. Lee, in Proceedings of the IEEE 57th electronic components & technology conference (IEEE, New York, 2007), pp. 1620–1625

  4. P. Borgesen, L. Yin, P. Kondos, D.W. Henderson, G. Servis, J. Therriault et al. in Proceedings of the IEEE 57th electronic components & technology conference (IEEE, New York, 2007), pp. 136–146

  5. K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, K.N. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. J. Appl. Phys. 97, 024508 (2005)

    Article  Google Scholar 

  6. Y.W. Wang, Y.W. Lin, C.R. Kao, Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates. Microelectron. Reliab. 49, 248–252 (2009)

    Article  CAS  Google Scholar 

  7. J.J. Yu, C.A. Yang, Y.F. Lin, C.H. Hsueh, C.R. Kao, Optimal Ag addition for the elimination of voids in Ni/SnAg/Ni micro joints for 3D IC applications. J. Alloys Compd. 629, 16–21 (2015)

    Article  CAS  Google Scholar 

  8. H.Y. Chuang, J.J. Yu, M.S. Kuo, H.M. Tong, C.R. Kao, Elimination of voids in reactions between Ni and Sn: a novel effect of silver. Scripta Mater. 66, 171–174 (2012)

    Article  CAS  Google Scholar 

  9. C.K. Chung, Y.J. Chen, W.M. Chen, C.R. Kao, Origin and evolution of voids in electroless Ni during soldering reaction. Acta Mater. 60, 4586–4593 (2012)

    Article  CAS  Google Scholar 

  10. P.T. Vianco, J.A. Rejent, P.F. Hlava, Solid-state intermetallic compound layer growth between copper and 95.5Sn-3.9Ag-0.6Cu solder. J. Electron. Mater. 33, 991–1004 (2004)

    Article  CAS  Google Scholar 

  11. T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. R 49, 1–60 (2005)

    Article  Google Scholar 

  12. W. Yang, R.W. Messler, L.E. Felton, Microstructure evolution of eutectic Sn-Ag solder joints. J. Electron. Mater. 23, 765–772 (1994)

    Article  CAS  Google Scholar 

  13. J. Yu, J.Y. Kim, Effects of residual S on Kirkendall void formation at Cu/Sn-3.5Ag solder joints. Acta Mater. 56, 5514–5523 (2008)

    Article  CAS  Google Scholar 

  14. J.Y. Kim, J. Yu, Effect of residual impurities in electroplated Cu films on the Kirkendall void formation during soldering. Appl. Phys. Lett. 92, 092109 (2008)

    Article  Google Scholar 

  15. J.Y. Kim, J. Yu, S.H. Kim, Effects of sulfide-forming element additions on the Kirkendall void formation and drop impact reliability of Cu/Sn-3.5Ag solder joints. Acta Mater. 57, 5001–5012 (2009)

    Article  CAS  Google Scholar 

  16. S. Kim, J. Yu, Effects of Ag on the Kirkendall void formation of Sn-xAg/Cu solder joints. J. Appl. Phys. 108, 083532 (2010)

    Article  Google Scholar 

  17. C. Yu, J. Chen, Z. Cheng, Y. Huang, J. Chen, J. Xu, H. Lu, Fine grained Cu film promoting Kirkendall voiding at Cu3Sn/Cu interface. J. Alloys Compd. 660, 80–84 (2016)

    Article  CAS  Google Scholar 

  18. Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen et al., Influence of plating parameters and solution chemistry on the voiding propensity at electroplated copper-solder interface. J. Appl. Electrochem. 38, 1695–1705 (2008)

    Article  CAS  Google Scholar 

  19. L. Yin, F. Wafula, N. Dimitrov, P. Borgesen, Toward a better understanding of the effect of Cu electroplating process parameters on Cu3Sn voiding. J. Electron. Mater. 41, 302–312 (2012)

    Article  CAS  Google Scholar 

  20. C. Yu, Y. Yang, J. Chen, J. Xu, J. Chen, H. Lu, Effect of deposit thickness during electroplating on Kirkendall voiding at Sn/Cu joints. Mater. Lett. 128, 9–11 (2014)

    Article  CAS  Google Scholar 

  21. H. Li, R. An, C. Wang, Y. Tian, Z. Jiang, Effect of Cu grain size on the voiding propensity at the interface of SnAgCu/Cu solder joints. Mater. Lett. 144, 97–99 (2015)

    Article  CAS  Google Scholar 

  22. P.T. Lee, Y.S. Wu, P.C. Lin, C.C. Chen, W.Z. Hsieh, C.E. Ho, High-speed Cu electrodeposition and its solderability. Surf. Coat. Technol. 320, 559–567 (2016)

    Article  Google Scholar 

  23. J.-Y. Park, W. Seo, S. Yoo, Y.-H. Kim, Effect of Cu electroplating parameters on microvoid formation and high-speed shear strength in Sn-3.0Ag-0.5Cu/Cu joints. J. Alloys Compd. 724, 492–500 (2017)

    Article  CAS  Google Scholar 

  24. G. Meng, T. Takemoto, H. Nishikawa, Correlations between IMC thickness and three factors in Sn-3Ag-0.5Cu alloy system. Trans. Nonferrous Met. Soc. China 17, 686–690 (2007)

    Article  CAS  Google Scholar 

  25. X. Hu, Z. Ke, Growth behavior of interfacial Cu-Sn intermetallic compounds of Sn/Cu reaction couples during dip soldering and aging. J. Mater. Sci.: Mater. Electron. 25, 936–945 (2014)

    CAS  Google Scholar 

  26. X. Hu, X. Yu, Y. Li, Q. Huang, Y. Liu, Z. Min, Effect of strain rate on interfacial fracture behaviors of Sn-58Bi/Cu solder joints. J. Mater. Sci.: Mater. Electron. 25, 57–64 (2014)

    CAS  Google Scholar 

  27. X. Yu, X. Hu, Y. Li, T. Liu, R. Zhang, Z. Min, Tensile properties of Cu/Sn-58Bi/Cu soldered joints subjected to isothermal aging. J. Mater. Sci.: Mater. Electron. 25, 2416–2425 (2014)

    CAS  Google Scholar 

  28. F. Gao, T. Takemoto, H. Nishikawa, Effects of Co and Ni addition on reactive diffusion between Sn-3.5Ag solder and Cu during soldering and annealing. Mater. Sci. Eng. A 420, 39–46 (2006)

    Article  Google Scholar 

  29. D. Udler, D.N. Seidman, Grain boundary and surface energies of fcc metals. Phys. Rev. B 54, R11133–R11136 (1996)

    Article  CAS  Google Scholar 

  30. X. Hu, Y. Li, Z. Min, Interfacial reaction and IMC growth between Bi-containing Sn0.7Cu solders and Cu substrate during soldering and aging. J. Alloys Compd. 582, 341–347 (2014)

    Article  CAS  Google Scholar 

  31. C.E. Ho, T.T. Kuo, C.C. Wang, W.H. Wu, Inhibiting the growth of Cu3Sn and Kirkendall voids in the Cu/Sn-Ag-Cu system by minor Pd alloying. Electron. Mater. Lett. 8, 495–501 (2012)

    Article  CAS  Google Scholar 

  32. Q. Li, Y.C. Chan, Growth kinetics of the Cu3Sn phase and void formation of sub-micrometre solder layers in Sn-Cu binary and Cu-Sn-Cu sandwich structures. J. Alloys Compd. 567, 47–53 (2013)

    Article  CAS  Google Scholar 

  33. Y. Yang, H. Lu, C. Yu, Y.Z. Li, Void formation at the interface in Sn/Cu solder joints. Microelectron. Reliab. 51, 2314–2318 (2011)

    Article  CAS  Google Scholar 

  34. Y.W. Wang, Y.W. Lin, C.R. Kao, Inhibiting the formation of microvoids in Cu3Sn by additions of Cu to solders. J. Alloys Compd. 493, 233–239 (2010)

    Article  CAS  Google Scholar 

  35. C.C. Chen, C.H. Hsieh, Y.W. Lee, C.H. Yang, C.E. Ho, Formation mechanism of pinholes in electroplated Cu films and its mitigation. Thin Solid Films 596, 209–215 (2015)

    Article  CAS  Google Scholar 

  36. S.S. Roy, R.M. Jacobberger, C. Wan, M.S. Arnold, Controlling the density of pinhole defects in monolayer graphene synthesized via chemical vapor deposition on copper. Carbon 100, 1–6 (2016)

    Article  Google Scholar 

  37. G. Yi, F. Cai, W. Peng, T. He, X. Yang, Y. Huang, Z. Yuan, P. Wang, Experimental analysis of pinholes on electrolytic copper foil and their prevention. Eng. Fail. Anal. 23, 76–81 (2012)

    Article  CAS  Google Scholar 

  38. K.M. Latt, K. Lee, T. Osipowicz, Y.K. Lee, Properties of electroplated copper thin film and its interfacial reactions in the EPCu/IMPCu/IMPTaN/SiO2/Si multilayer structure. Mater. Sci. Eng. B 83, 1–7 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51465039 and 51765040), Natural Science Foundation of Jiangxi Province (20161BAB206122 and 20161BAB206128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Liu, X., Hu, X. et al. Effect of electroplating parameters on electroplated Cu film and microvoid formation of solder joints. J Mater Sci: Mater Electron 29, 18404–18416 (2018). https://doi.org/10.1007/s10854-018-9955-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9955-6

Navigation