Skip to main content
Log in

Dielectric relaxation and relevant mechanism in giant dielectric constant Sm2/3Cu3Ti4O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sm2/3Cu3Ti4O12 ceramics with giant dielectric constant were successfully prepared by the traditional solid-state sintering process. The dielectric characteristics and relevant mechanism were systematically investigated. The dielectric constants of Sm2/3Cu3Ti4O12 ceramics can reach to 104 at 298 K and 1 kHz, and also exhibited two distinct thermal-activated dielectric relaxations in different temperature ranges. The dielectric relaxation at low temperatures was regarded as the effect of the polyvalence structures (Cu2+/Cu3+ and Ti3+/Ti4+) in grains due to the oxygen compensation during the sintering process, while the dielectric relaxation at high temperatures was induced by the grain boundary effects. The giant dielectric response in Sm2/3Cu3Ti4O12 ceramics can be associated with the heterogeneous structure and combined effect of the grain and grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  CAS  Google Scholar 

  2. M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)

    Article  CAS  Google Scholar 

  3. L. Ni, X.M. Chen, Appl. Phys. Lett. 91, 122905 (2007)

    Article  Google Scholar 

  4. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172101 (2004)

    Article  Google Scholar 

  5. L. Zhang, Z.J. Tang, Phys. Rev. B 70, 174306 (2004)

    Article  Google Scholar 

  6. Y. Zhu, J.C. Zheng, L. Wu, A.I. Frenkel, J. Hanson, P. Northrup, W. Ku, Phys. Rev. Lett. 99, 037602 (2007)

    Article  CAS  Google Scholar 

  7. S.Y. Chung, Appl. Phys. Lett. 87, 052901 (2005)

    Article  Google Scholar 

  8. C.C. Wang, L.W. Zhang, Appl. Phys. Lett. 88, 042906 (2006)

    Article  Google Scholar 

  9. W. Li, R.W. Schwartz, Phys. Rev. B 75, 012104 (2007)

    Article  Google Scholar 

  10. T.T. Fang, H.K. Shiau, J. Am. Ceram. Soc. 87, 2072 (2010)

    Article  Google Scholar 

  11. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokomy, J.P. Gonjua, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313 (2012)

    Article  CAS  Google Scholar 

  12. S.H. Hong, D.Y. Kim, H.M. Park, Y.M. Kim, J. Am. Ceram. Soc. 90, 2118 (2007)

    Article  CAS  Google Scholar 

  13. M. Li, G. Cai, D.F. Zhang, W.Y. Wang, W.J. Wang, X.L. Chen, J. Appl. Phys. 104, 074107 (2008)

    Article  Google Scholar 

  14. P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 2257 (2012)

    Article  CAS  Google Scholar 

  15. J. Jumpatam, B. Putasaeng, T. Yamwron, P. Thongbai, S. Maensiri, Ceram. Int. 39, 1057 (2013)

    Article  CAS  Google Scholar 

  16. C.H. Mu, Y.Q. Song, H.B. Wang, X.N. Wang, J. Appl. Phys. 117, 17B723 (2015)

    Article  Google Scholar 

  17. J. Yang, C.P. Yang, X.J. Luo, D.W. Shi, H.B. Xiao, L.F. Xu, K. Bȁrner, Ceram. Int. 42, 10866 (2016)

    Article  CAS  Google Scholar 

  18. J. Boonlakhorn, P. Thongbai, Ceram. Int. 43, 12736 (2017)

    Article  CAS  Google Scholar 

  19. Z.H. Peng, J.W. Li, P.F. Liang, Z.P. Yang, X.L. Chao, J. Eur. Ceram. Soc. 37, 4637 (2017)

    Article  CAS  Google Scholar 

  20. R.Z. Xue, G.Y. Zhao, J. Chen, Z.P. Chen, D.W. Liu, Mater. Res. Bull. 76, 124 (2016)

    Article  CAS  Google Scholar 

  21. J. Boonlakhorn, P. Kidkhunthod, M. Chanlek, P. Thongbai, J. Eur. Ceram. Soc. 38, 137 (2018)

    Article  Google Scholar 

  22. J. Wang, Z.Y. Lu, T.F. Deng, C.F. Zhong, Z.W. Chen, J. Am. Ceram. Soc. 100, 4021 (2017)

    Article  CAS  Google Scholar 

  23. Z.H. Peng, P.F. Liang, X. Wang, H. Peng, X.F. Chen, Z.P. Yang, X.L. Chao, Mater. Lett. 210, 301 (2018)

    Article  CAS  Google Scholar 

  24. P.F. Liang, Z.P. Yang, X.L. Chao, Z.H. Liu, J. Am. Ceram. Soc. 95, 2218 (2012)

    Article  CAS  Google Scholar 

  25. J.J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. 98, 093703 (2005)

    Article  Google Scholar 

  26. H.M. Ren, P.F. Liang, Z.P. Yang, Mater. Res. Bull. 45, 1608 (2010)

    Article  CAS  Google Scholar 

  27. P. Kum-onsa, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Eur. Ceram. Soc. 35, 1441 (2015)

    Article  CAS  Google Scholar 

  28. L. Ni, M.S. Fu, Y. Liu, T.Y. Tang, S. Wang, B. Zou, S.G. Zhao, J. Mater. Sci. 27, 111 (2016)

    CAS  Google Scholar 

  29. P.S. Neelakantaswamy, B.V.R. Chowdari, A. Rajaratnam, J. Phys D 16, 1785 (1983)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (Grand Number 51501017), and the fund of State Key Laboratory of Solidification Processing in NWPU (Grand Number KP201524) of China and the fund of National College Students’ Innovative and Entrepreneurial Training Program (Grand Number 201510710085). Authors are grateful to the Laboratory of Dielectric Materials in Zhejiang University for the support in performing the measurement of dielectric properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, L., Fu, M. & Zhang, Y. Dielectric relaxation and relevant mechanism in giant dielectric constant Sm2/3Cu3Ti4O12 ceramics. J Mater Sci: Mater Electron 29, 17737–17742 (2018). https://doi.org/10.1007/s10854-018-9880-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9880-8

Navigation