Skip to main content
Log in

Fabrication of Ag-modified porous ZnMgO nanorods with enhanced photocatalytic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Ag-modified porous ZnMgO nanorods (Ag/ZnMgO NRs) photocatalysts were prepared using a solvothermal method followed by a calcination treatment. The ZnMgO NRs showed a porous rod-like structure. Ag nanoparticles (NPs) were successfully loaded on the ZnMgO NRs to form a heterostructure. The rod-like structure of ZnMgO NRs was not affected after the modification with Ag NPs. The photocatalytic degradation performance under white light irradiation showed that 3% of Ag-modified porous ZnMgO NRs presented the highest photocatalytic performance, which can achieve the completely degradation of Rhodamine B and norfloxacin in only 20 min and 10 min, respectively. The improved photocatalytic performance of Ag/ZnMgO NRs is attributed to the key role of Ag NPs, which can effectively reduce the recombination of photogenerated electrons and holes and accelerate the transfer of photogenerated charge carriers, thus promoting the photocatalytic reaction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.K. Zhu, J. Ren, X.F. Yang, G.J. Chang, Y.Y. Bu, G.D. Wei, W. Han, D.J. Yang, Interface engineering of 3D BiVO4/Fe-based layered double hydroxide core/shell nanostructures for boosting photoelectrochemical water oxidation. J. Mater. Chem. A 5(20), 9952–9959 (2017)

    Article  CAS  Google Scholar 

  2. L. Zhang, D.W. Jing, X.L. She, H.W. Liu, D.J. Yang, Y. Lu, J. Li, Z.F. Zheng, L.J. Guo, Heterojunctions in g-C3N4/TiO2(B) nanofibres with exposed (001) plane and enhanced visible-light photoactivity. J. Mater. Chem. A 2(7), 2071–2078 (2014)

    Article  CAS  Google Scholar 

  3. W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohomed, Facet-dependent photocatalytic properties of TiO2-based composites for energy conversion and environmental remediation. ChemSusChem 7(3), 690–719 (2014)

    Article  CAS  Google Scholar 

  4. C. Feng, Z.Y. Chen, J. Hou, J.R. Li, X.B. Li, L.K. Xu, M.X. Sun, R.C. Zeng, Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light. Chem. Eng. J. 345, 404–413 (2018)

    Article  CAS  Google Scholar 

  5. D.J. Yang, J. Zhao, H.W. Liu, Z.F. Zheng, M.O. Adebojo, H.X. Wang, X.T. Liu, H.J. Zhang, J.C. Zhao, J. Bell, H.Y. Zhu, Enhancing photoactivity of TiO2(B)/anatase core-shell nanofibers by selectively doping cerium ions into the TiO2(B) core. Chemistry (Weinheim an der Bergstrasse. Germany) 19(16), 5113–5119 (2013)

    CAS  Google Scholar 

  6. N.R. Khalid, A. Majid, M.B. Tahir, N.A. Niaz, S. Khalid, Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review. Ceram. Int. 43(17), 14552–14571 (2017)

    Article  CAS  Google Scholar 

  7. W.B. Li, C. Feng, S.Y. Dai, J.G. Yue, F.X. Hua, H. Hou, Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light. Appl. Catal. B 168, 465–471 (2015)

    Article  Google Scholar 

  8. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018)

    Article  CAS  Google Scholar 

  9. C. Feng, Z.Y. Chen, W.B. Li, J. Zhou, Y.Q. Sui, L.K. Xu, M.X. Sun, Effectively enhanced photocatalytic degradation performance of the Ag-modified porous ZnO nanorod photocatalyst. J. Mater. Sci.: Mater. Electron. 29(11), 9301–9311 (2018)

    CAS  Google Scholar 

  10. D.J. Yang, H.W. Liu, Z.F. Zheng, Y. Yuan, J.C. Zhao, E.R. Waclawik, X.B. Ke, H.Y. Zhu, An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 131(49), 17885–17893 (2009)

    Article  CAS  Google Scholar 

  11. P.V.L. Reddy, B. Kavitha, P.A.K. Reddy, K.H. Kim, TiO2-based photocatalytic disinfection of microbes in aqueous media: a review. Environ. Res. 154, 296–303 (2017)

    Article  Google Scholar 

  12. W. Yu, J. Zhang, T. Peng, New insight into the enhanced photocatalytic activity of N-, C-and S-doped ZnO photocatalysts. Appl. Catal. B 181, 220–227 (2016)

    Article  CAS  Google Scholar 

  13. X.F. Wang, H. Lu, W.W. Liu, M. Guo, M. Zhang, Electrodeposition of flexible stainless steel mesh supported ZnO nanorod arrays with enhanced photocatalytic performance. Ceram. Int. 43(8), 6460–6466 (2017)

    Article  CAS  Google Scholar 

  14. T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014)

    Article  CAS  Google Scholar 

  15. Y.Y. Bu, J. Ren, H.W. Zhang, D.J. Yang, Z.Y. Chen, J.P. Ao, Photogenerated-carrier separation along edge dislocation of WO3 single-crystal nanoflower photoanode. J. Mater. Chem. A 6, 8604–8611 (2018)

    Article  CAS  Google Scholar 

  16. M. Kwiatkowski, R. Chassagnon, O. Heintz, N. Geoffroy, M. Skompska, Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism. Appl. Catal. B 204, 200–208 (2017)

    Article  CAS  Google Scholar 

  17. Y. Wang, Y.Z. Zheng, S.Q. Lu, X. Tao, Y.K. Che, J.F. Chen, Visible-light-responsive TiO2-coated ZnO: I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Appl. Mater. Interfaces 7(11), 6093–6101 (2015)

    Article  CAS  Google Scholar 

  18. H.W. Tian, X.Y. Zhang, Y.Y. Bu, Sulfur- and carbon-codoped carbon nitride for photocatalytic hydrogen evolution performance improvement. ACS Sustain. Chem. Energy 6(6), 7346–7354 (2018)

    Article  CAS  Google Scholar 

  19. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016)

    Article  CAS  Google Scholar 

  20. S. Akir, A. Barras, Y. Coffinier, M. Bououdina, R. Boukherroub, A.D. Qmrani, Eco-friendly synthesis of ZnO nanoparticles with different morphologies and their visible light photocatalytic performance for the degradation of Rhodamine B. Ceram. Int. 42(8), 10259–10265 (2016)

    Article  CAS  Google Scholar 

  21. X.L. Ma, H. Li, T.Y. Liu, S.S. Du, Q.P. Qiang, Y.H. Wang, S. Yin, T. Sato, Comparison of photocatalytic reaction-induced selective corrosion with photocorrosion: Impact on morphology and stability of Ag-ZnO. Appl. Catal. B 201, 348–358 (2017)

    Article  CAS  Google Scholar 

  22. Y.Y. Bu, Z.Y. Chen, Effect of hydrogen treatment on the photoelectrochemical properties of quantum dots sensitized ZnO nanorod array. J. Power Sources 272, 647–653 (2014)

    Article  CAS  Google Scholar 

  23. C. Han, Z. Chen, N. Zhang, J.C. Colmenares, Y.J. Xu, Hierarchically CdS Decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance. Adv. Func. Mater. 25(2), 221–229 (2015)

    Article  CAS  Google Scholar 

  24. R.L. Wang, T. Xie, T. Zhang, T.F. Pu, Y.Y. Bu, J.P. Ao, Fabrication of FTO–BiVO4–W–WO3 photoanode for improving photoelectrochemical performance: based on the Z-scheme electron transfer mechanism. J. Mater. Chem. A 6, 12956–12961 (2018)

    Article  CAS  Google Scholar 

  25. H.C. Yang, S.W. Zhang, R.Y. Cao, X.L. Deng, Z.P. Li, X.J. Xu, Constructing the novel ultrafine amorphous iron oxyhydroxide/g-C3N4 nanosheets heterojunctions for highly improved photocatalytic performance. Sci. Rep. 7(1), 8686 (2017)

    Article  Google Scholar 

  26. R.Y. Cao, H.C. Yang, X.L. Deng, S.W. Zhang, X.J. Xu, In-situ synthesis of amorphous silver silicate/carbonate composites for selective visible-light photocatalytic decomposition. Sci. Rep. 7(1), 15001 (2017)

    Article  Google Scholar 

  27. S.W. Zhang, H.H. Gao, Y.S. Huang, X.X. Wang, T. Hayat, J.X. Li, X.J. Xu, X.K. Wang, Ultrathin g-C3N4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation. Environ. Sci. Nano 5(5), 1179–1190 (2018)

    Article  CAS  Google Scholar 

  28. D.J. Yang, C.C. Chen, Z.F. Zheng, H.W. Liu, E.R. Waclawik, Z.M. Yan, Y.N. Huang, H.J. Zhang, J.C. Zhao, H.Y. Zhu, Grafting silica species on anatase surface for visible light photocatalytic activity. Energy Environ. Sci. 4(6), 2279–2287 (2011)

    Article  CAS  Google Scholar 

  29. E. Diler, S. Rioual, B. Lescop, B. Thierry, B. Rouvellou, Stability of ZnMgO oxide in a weak alkaline solution. Thin Solid Films 520(7), 2819–2823 (2012)

    Article  CAS  Google Scholar 

  30. H.W. Wang, W.Q. Zheng, W.B. Li, F.H. Tian, S.P. Kuang, Y.Y. Bu, J.P. Ao, Control the energy band potential of ZnMgO solid solution with enhanced photocatalytic hydrogen evolution capacity. Appl. Catal. B 217, 523–529 (2017)

    Article  CAS  Google Scholar 

  31. H. Nouri, A. Habibi-Yangjeh, M. Azadi, Preparation of Ag/ZnMgO nanocomposites as novel highly efficient photocatalysts by one-pot method under microwave irradiation. J. Photochem. Photobiol. A 281, 59–67 (2014)

    Article  CAS  Google Scholar 

  32. A. Kharatzadeh, F. Jamali-Sheini, R. Yousefi, Excellent photocatalytic performance of Zn(1–x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater. Des. 107, 47–55 (2016)

    Article  CAS  Google Scholar 

  33. R. Yousefi, H.R. Azimi, M.R. Mahmoudian, M. Cheraghizade, Highly enhanced photocatalytic performance of Zn(1–x)MgxO/rGO nanostars under sunlight irradiation synthesized by one-pot refluxing method. Adv. Powder Technol. 29(1), 78–85 (2018)

    Article  CAS  Google Scholar 

  34. R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J. Phys. Chem. C 112(35), 13563–13570 (2008)

    Article  CAS  Google Scholar 

  35. Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg. Chem. 46(17), 6980–6986 (2007)

    Article  CAS  Google Scholar 

  36. Z.Z. Lou, Z.Y. Wang, B.B. Huang, Y. Dai, Synthesis and activity of plasmonic photocatalysts. ChemCatChem 6(9), 2456–2476 (2014)

    Article  CAS  Google Scholar 

  37. B. Chai, X. Wang, S.Q. Cheng, H. Zhou, F. Zhang, One-pot triethanolamine-assisted hydrothermal synthesis of Ag/ZnO heterostructure microspheres with enhanced photocatalytic activity. Ceram. Int. 40(1), 429–435 (2014)

    Article  CAS  Google Scholar 

  38. Y.Y. Bu, Z.Y. Chen, W.B. Li, Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material. Appl. Catal. B 144, 622–630 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute (LSMRI) (KF160413), and the National Natural Science Foundation of China (21301161, 41376126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Zhang, Q., Wang, L. et al. Fabrication of Ag-modified porous ZnMgO nanorods with enhanced photocatalytic performance. J Mater Sci: Mater Electron 29, 16962–16970 (2018). https://doi.org/10.1007/s10854-018-9791-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9791-8

Navigation