Skip to main content

Advertisement

Log in

Titania nanotubes dispersed graphitic carbon nitride nanosheets as efficient electrode materials for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we report the synthesis of a hybrid nanocomposite containing one dimensional (1D) TiO2 nanotube supported over a two dimensional (2D) network of conducting graphitic carbon nitride (g-C3N4) nanosheets by a facile hydrothermal strategy. Symmetric supercapacitors based on the hybrid composite electrodes were fabricated and their electrochemical energy storage performances were evaluated and the results were compared with individual component based supercapacitors. The symmetric supercapacitor based on the composite with 1:4 weight ratios of TiO2 and g-C3N4 exhibited a remarkable increase in the specific capacitance in comparison with the individual components. The improvement in electrochemical behavior of the composite sample was attributed to the increase in surface area of the composite due to the spacer effect of titania nanotubes in the 2D g-C3N4 nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Qu, S. Yang, X. Feng, 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23, 5574–5574+ (2011)

    Article  CAS  Google Scholar 

  2. H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291–312 (2009)

    Article  CAS  Google Scholar 

  3. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  4. R.B. Rakhi, H.N. Alshareef, Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes. J. Power Sources 196, 8858–8865 (2011)

    Article  CAS  Google Scholar 

  5. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong et al., Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690–1696 (2012)

    Article  CAS  Google Scholar 

  6. C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)

    Article  CAS  Google Scholar 

  7. J.W. Lee, T. Ahn, J.H. Kim, J.M. Ko, J.-D. Kim, Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim. Acta 56, 4849–4857 (2011)

    Article  CAS  Google Scholar 

  8. X. Xia, J. Tu, Y. Mai, X. Wang, C. Gu, Zhao X-b. Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem. 21, 9319–9325 (2011)

    Article  CAS  Google Scholar 

  9. Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu et al., Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 113, 14020–14027 (2009)

    Article  CAS  Google Scholar 

  10. Y.-H. Lin, T.-Y. Wei, H.-C. Chien, S.-Y. Lu, Manganese oxide/carbon aerogel composite: an outstanding supercapacitor electrode material. Adv. Energy Mater. 1, 901–907 (2011)

    Article  CAS  Google Scholar 

  11. H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen et al., High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116, 129–136 (2014)

    Article  CAS  Google Scholar 

  12. G. Wang, Z.Y. Liu, J.N. Wu, Q. Lu, Preparation and electrochemical capacitance behavior of TiO2-B nanotubes for hybrid supercapacitor. Mater. Lett. 71, 120–122 (2012)

    Article  CAS  Google Scholar 

  13. M. Salari, S.H. Aboutalebi, K. Konstantinov, H.K. Liu, A highly ordered titania nanotube array as a supercapacitor electrode. Phys. Chem. Chem. Phys. 13, 5038–5041 (2011)

    Article  CAS  Google Scholar 

  14. B. Chen, J. Hou, K. Lu, Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. Langmuir 29, 5911–5919 (2013)

    Article  CAS  Google Scholar 

  15. A. Ramadoss, S.J. Kim, Vertically aligned TiO2 nanorod arrays for electrochemical supercapacitor. J. Alloys Compd. 561, 262–267 (2013)

    Article  CAS  Google Scholar 

  16. H. Zhou, Y. Zhong, Z. He, L. Zhang, J. Wang, J. Zhang et al., Three-dimensional nanoporous TiO2 network films with excellent electrochemical capacitance performance. J. Alloys Compd. 597, 1–7 (2014)

    Article  CAS  Google Scholar 

  17. M. Yu, Y. Zeng, C. Zhang, X. Lu, C. Zeng, C. Yao et al., Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors. Nanoscale 5, 10806–10810 (2013)

    Article  CAS  Google Scholar 

  18. C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects. J. Mater. Chem. 22, 19161–19167 (2012)

    Article  CAS  Google Scholar 

  19. Y. Luo, D. Kong, J. Luo, S. Chen, D. Zhang, K. Qiu et al., Hierarchical TiO2 nanobelts@MnO2 ultrathin nanoflakes core-shell array electrode materials for supercapacitors. RSC Adv. 3, 14413–14422 (2013)

    Article  CAS  Google Scholar 

  20. H. Zhou, Y. Zhang, Electrochemically self-doped TiO2 nanotube arrays for supercapacitors. J. Phys. Chem. C 118, 5626–5636 (2014)

    Article  CAS  Google Scholar 

  21. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Mueller, R. Schloegl et al., Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18, 4893–4908 (2008)

    Article  CAS  Google Scholar 

  22. B. Dong, M. Li, S. Chen, D. Ding, W. Wei, G. Gao et al., Formation of g-C3N4@Ni(OH)2 honeycomb nanostructure and asymmetric supercapacitor with high energy and power density. ACS Appl. Mater. Interfaces 9, 17890–17896 (2017)

    Article  CAS  Google Scholar 

  23. S. Panneri, P. Ganguly, M. Mohan, B.N. Nair, A.A.P. Mohamed, K.G. Warrier et al., Photoregenerable, bifunctional granules of carbon-doped g-C3N4 as adsorptive photocatalyst for the efficient removal of tetracycline antibiotic. ACS Sustain. Chem. Eng. 5, 1610–1618 (2017)

    Article  CAS  Google Scholar 

  24. B. Vijayan, N.M. Dimitrijevic, T. Rajh, K. Gray, Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. J. Phys. Chem. C 114, 12994–13002 (2010)

    Article  CAS  Google Scholar 

  25. V. Khomenko, E. Frackowiak, F. Beguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim. Acta 50, 2499–2506 (2005)

    Article  CAS  Google Scholar 

  26. F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 21, 15171–15174 (2011)

    Article  CAS  Google Scholar 

  27. G. Liao, S. Chen, X. Quan, H. Yu, H. Zhao, Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 22, 2721–2726 (2012)

    Article  CAS  Google Scholar 

  28. S.C. Pillai, P. Periyat, R. George, D.E. McCormack, M.K. Seery, H. Hayden et al., Synthesis of high-temperature stable anatase TiO2 photocatalyst. J. Phys. Chem. C 111, 1605–1611 (2007)

    Article  CAS  Google Scholar 

  29. I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 358, 278–286 (2015)

    Article  CAS  Google Scholar 

  30. K. Koci, M. Reli, I. Troppova, M. Sihor, J. Kupkova, P. Kustrowski et al., Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction. Appl. Surf. Sci. 396, 1685–1695 (2017)

    Article  CAS  Google Scholar 

  31. C. Arbizzani, M. Catellani, M. Mastragostino, C. Mingazzini, N-doped and, p-doped, polydithieno 3,4-B-3′,4′-D thiophene-a narrow-band gap polymer for redox supercapacitors. Electrochim. Acta 40, 1871–1876 (1995)

    Article  CAS  Google Scholar 

  32. Z. Yan, L. Xu, S. Huang, J. Bao, J. Qiu, J. Lian et al., Facile preparation of TiO2/C3N4 hybrid materials with enhanced capacitive properties for high performance supercapacitors. J. Alloys Compd. 702, 178–185 (2017)

    Google Scholar 

  33. M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010)

    Article  CAS  Google Scholar 

  34. M.S. Kim, T.-W. Lee, J.H. Parka, Controlled TiO2 nanotube arrays as an active material for high power energy-storage devices. J. Electrochem. Soc. 156, A584–A588 (2009)

    Article  CAS  Google Scholar 

  35. P.R. Deshmukh, S.V. Patil, R.N. Bulakhe, S.N. Pusawale, J.-J. Shim, C.D. Lokhande, Chemical synthesis of PANI-TiO2 composite thin film for supercapacitor application. RSC Adv. 5, 68939–68946 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JitheshKavil is grateful to University Grants Commission, Govt. of India for FDP fellowship. R.B.Rakhi acknowledges the support of Ramanujan Fellowship, Department of Science and Technology (DST), Govt.of India and CSIR-NIIST Thiruvananthapuram, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pradeepan Periyat or R. B. Rakhi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavil, J., Anjana, P.M., Periyat, P. et al. Titania nanotubes dispersed graphitic carbon nitride nanosheets as efficient electrode materials for supercapacitors. J Mater Sci: Mater Electron 29, 16598–16608 (2018). https://doi.org/10.1007/s10854-018-9753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9753-1

Navigation