Skip to main content
Log in

Cr2O3 nanocrystal anode materials with improved cyclic stability for lithium ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The cyclic stability of Cr2O3 is very poor due to the large volume change during lithiation/delithiation. In this study, we have found that Cr2O3 nanocrystals synthesized by using a simple hydrothermal method can improve its cyclic stability. Sample calcined at 430 °C has uniform size, compact structure and high crystallization degree. These Cr2O3 nanocrystals exhibit a stable cyclic performance of 185 mAh g−1 after 100 cycles at 100 mA g−1. It is useful in real life, such as providing power consumption for minitype device, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Wang, S. Qu, Y. Cheng, C. Zheng, S. Chen, H. Wu, Appl. Surf. Sci. 416, 338–343 (2017)

    Article  Google Scholar 

  2. H. Wu, Y. Wang, C. Zheng, J. Zhu, G. Wu, X. Li, J. Alloys Compd. 685, 8–14 (2016)

    Article  Google Scholar 

  3. G. Wu, H. Wu, K. Wang, C. Zheng, Y. Wang, A. Feng, RSC Adv. 6, 58069–58076 (2016)

    Article  Google Scholar 

  4. S. Qu, Y. Yu, K. Lin, P. Liu, C. Zheng, L. Wang, T. Xu, Z. Wang, H. Wu, J. Mater. Sci.: Mater. Electron. 29, 1232–1237 (2018)

    Google Scholar 

  5. Y. Xiang, Z. Chen, C. Chen, T. Wang, M. Zhang, J. Alloys Compd. 724, 406–412 (2017)

    Article  Google Scholar 

  6. T. Yang, Z. Chen, H. Zhang, M. Zhang, T. Wang, Electrochim. Acta 217, 55–61 (2016)

    Article  Google Scholar 

  7. H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Chem. Eur. J. 22, 8864–8871 (2016)

    Article  Google Scholar 

  8. G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Chem. Eng. J. 333, 519–528 (2018)

    Article  Google Scholar 

  9. Z. Jia, K. Kou, M. Qin, H. Wu, F. Puleo, L. Liotta, Catalysts 7, 256–276 (2017)

    Article  Google Scholar 

  10. Y. Yu, S. Qu, D. Zang, L. Wang, H. Wu, Nanoscale Res. Lett. 13, 50 (2018)

    Article  Google Scholar 

  11. M. Qin, Q. Shuai, G. Wu, B. Zheng, Z. Wang, H. Wu, Mater. Sci. Eng. B 224, 125–138 (2017)

    Article  Google Scholar 

  12. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C 3, 7677–7690 (2015)

    Article  Google Scholar 

  13. H. Wu, G. Wu, L. Wang, Powder Technol. 269, 443–451 (2015)

    Article  Google Scholar 

  14. T. Xu, L. Chen, Z. Guo, T. Ma, Phys. Chem. Chem. Phys. 18, 27026–27050 (2016)

    Article  Google Scholar 

  15. H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Powder Technol. 333, 153–159 (2018)

    Article  Google Scholar 

  16. A. Feng, Z. Jia, Y. Zhao, H. Lv, J. Alloys Compd. 745, 547–554 (2018)

    Article  Google Scholar 

  17. X. Lai, J.E. Halpert, D. Wang, Energy Environ. Sci. 5, 5604–5618 (2012)

    Article  Google Scholar 

  18. J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, D. Wang, Angew. Chem. 125, 6545–6548 (2013)

    Article  Google Scholar 

  19. S. Xu, C.M. Hessel, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao, D. Wang, Energy Environ. Sci. 7, 632–637 (2014)

    Article  Google Scholar 

  20. Z. Dong, X. Lai, J.E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, L. Jiang, Adv. Mater. 24, 1046–1049 (2012)

    Article  Google Scholar 

  21. H. Ren, R. Yu, J. Wang, Q. Jin, M. Yang, D. Mao, D. Kisailus, H. Zhao, D. Wang, Nano Lett. 14, 6679–6684 (2014)

    Article  Google Scholar 

  22. J. Qi, X. Lai, J. Wang, H. Tang, H. Ren, Y. Yang, Q. Jin, L. Zhang, R. Yu, G. Ma, Z. Su, H. Zhao, D. Wang, Chem. Soc. Rev. 44, 6749–6773 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by National Natural Science Foundation of China (Nos. 51704242), the Fundamental Research Funds for the Central Universities (3102018zy045), the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2017JQ5116), China Postdoctoral Science Foundation (No. 2016M590619), Natural Science Foundation of Shandong Province (No. ZR2016EEQ28) and Qingdao Postdoctoral Application Research Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ailing Feng or Hongjing Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Qu, S., Jia, Z. et al. Cr2O3 nanocrystal anode materials with improved cyclic stability for lithium ion batteries. J Mater Sci: Mater Electron 29, 11795–11800 (2018). https://doi.org/10.1007/s10854-018-9279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9279-6

Navigation