Skip to main content
Log in

Investigations on the physical properties of Mn-modified ZnO samples prepared by sol–gel route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, we have synthesized successfully sol–gel derived Zn1−xMnxO (x = 0.02, 0.04 and 0.06) nanoparticles to see the effect of Mn doping on structural, optical and magnetic properties of ZnO. The phase purity and structural analysis of all the samples have been made by the X-ray diffraction (XRD) technique with Rietveld refinement using the FullProf software. This study clearly revealed that Mn-doped ZnO nanoparticles exhibit hexagonal wurtzite structure with P63mc symmetry. Lattice parameters found to be increased with Mn doping, this shows that Mn2+ is successfully substituted on Zn2+ sites. The morphology of the nanoparticles was examined by FE-SEM. UV–Vis, FTIR, PL and VSM techniques have been used to see the optical and magnetic response of all the samples. UV–Vis spectra clearly indicate the sharp increment in the band gap energy with Mn doping up to 3.22 eV might be due to the Burstein–Moss effect. FT-IR studies have been utilized to find out the different phonon modes present in the prepared samples. Photoluminescence study revealed a blue shift of the near band emission (NBE) and an increase in the intrinsic defects (viz. VO and OZn) density with increasing Mn concentration up to a certain extent of doping (6%). Magnetic measurement of the Mn doped ZnO samples shows bound magnetic polaron (BMP) induced room temperature ferromagnetism (RTFM) behavior, however, there is suppression of ferromagnetic behavior due to the existence of antiferromagnetic ordering also present in the samples, supported by the Curie–Weiss Law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Omri, J. El Ghoul, O.M. Lemine, M. Bououdina, B. Zhang, L. El Mir, Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol–gel technique. Superlattices Microstruct. 60(2013), 139–147 (2013)

    CAS  Google Scholar 

  2. T. Diet, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Google Scholar 

  3. K. Sato, H. Katayama-Yoshida, Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn. J. Appl. Phys. 39, L555–L539 (2000)

    CAS  Google Scholar 

  4. R. Bhargava, P.K. Sharma, A.K. Chawla, S. Kumar, R. Chandra, A.C. Pandey, Kumar N.,Variation in structural, optical and magnetic properties of Zn1−xCrxO (x = 0.0, 0.10, 0.15, and 0.20) nanoparticles: role of dopant concentration on non-saturation of magnetization. Mater. Chem. Phys. 125, 664–671 (2011)

    CAS  Google Scholar 

  5. K. Omri, J. El Ghoul, O.M. Lemine, M. Bououdina, B. Zhang, E.L. Mir, Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol–gel technique. Superlattices Microstruct. 60, 139–147 (2013)

    CAS  Google Scholar 

  6. N. Al-Hardan, M.J. Abdullah, A.A. Aziz, Impedance spectroscopy of undoped and Cr-doped ZnO gas sensors under different oxygen concentrations. Appl. Surf. Sci. 257, 8993–8997 (2011)

    CAS  Google Scholar 

  7. K. Samanta, S. Dussan, R.S. Katiyar, Structural and optical properties of nanocrystalline Zn1−xMnxO. Appl. Phys. Lett. 90, 261903–261905 (2007)

    Google Scholar 

  8. B. Yang, A. Kumar, H. Zhang, P. Feng, R.S. Katiyar, Z.W. Yang, Growth of ZnO nanostructures on metallic and semiconducting substrates by pulsed laser deposition technique. J. Phys. D 42(4), 045415 (2009)

    Google Scholar 

  9. K. Sato, H. Katayama-Yoshida, First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17, 367 (2002)

    CAS  Google Scholar 

  10. S. Ekambaram, Combustion synthesis and characterization of new class of ZnO-based ceramic pigments. J. Alloys Compd. 390, L4–L6 (2005)

    CAS  Google Scholar 

  11. S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, N. Muensit, Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method. Ceram. Int. 39, 2811–2819 (2013)

    CAS  Google Scholar 

  12. O. Jayakumar, H. Salunke, R. Kadam, M. Mohapatra, G. Yaswant, S. Kulshreshtha, Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method. Nanotechnology 17, 1278 (2006)

    CAS  Google Scholar 

  13. S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009)

    Google Scholar 

  14. S. Han, T. Jang, Y. Kim, B. Park, J. Park, Y. Jeong, Magnetism in Mn-doped ZnO bulk samples prepared by solid state reaction. Appl. Phys. Lett. 83, 920–922 (2003)

    CAS  Google Scholar 

  15. R. Gegova, Y. Dimitriev, A.B. Nedelcheva, R. Iordanova, A. Loukanov, T. Iliev, Combustion gel method for synthesis of nanosized ZnO/TiO2 powders. J. Chem. Technol. Metall. 48(2), 147–153 (2013)

    CAS  Google Scholar 

  16. K. Omri, O.M. Lemine, J. El Ghoul, L. El Mir, Sol–gel synthesis and room temperature ferromagnetism in Mn doped ZnO nanocrystals. J. Mater. Sci. 26, 5930–5936 (2015)

    CAS  Google Scholar 

  17. G. Srinet, R. Kumar, V. Sajal, Optical and magnetic properties of Mn doped ZnO samples prepared by solid state route. J Mat. Sci. 25, 3052–3056 (2014)

    CAS  Google Scholar 

  18. S. Thota, T. Dutta, J. Kumar, On the sol–gel synthesis and thermal, structural, and magnetic studies of transition metal (Ni, Co, Mn) containing ZnO powders. J. Phys. 18, 2473–2486 (2006)

    CAS  Google Scholar 

  19. K. Omri, I. Najeh, L. El Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42, 8940–8948 (2016)

    CAS  Google Scholar 

  20. X.L. Wang, C.Y. Luan, Q. Shao, A. Pruna, C.W. Leung, R. Lortz, J.A. Zapien, A. Ruotolo, Effect of the magnetic order on the room-temperature band-gap of Mn-doped ZnO thin films, Appl. Phys. Lett. 102, 102112–102115 (2013)

    Google Scholar 

  21. R. Cusco, E. Alarcon-Liado, J. Ibanez, L. Artus, J. Jimenez, B. Wang, M.J. Callahan, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 75, 165202–165212 (2007)

    Google Scholar 

  22. H.Y. Xu, Y.C. Liu, C.S. Xu, Y.X. Liu, C.L. Shao, R. Mu, Structural, optical, and magnetic properties of Mn-doped ZnO thin film. J. Chem. Phys. 124, 074707–074710 (2006)

    CAS  Google Scholar 

  23. H.K. Yadav, K. Sreenivas, R.S. Katiyar, V. Gupta, Defect induced activation of Raman silent modes in rf co-sputtered Mn doped ZnO thin films. J. Phys. D 40, 6005–6009 (2007)

    CAS  Google Scholar 

  24. C.J. Cong, L. Liao, Q.Y. Liu, J.C. Li, K.L. Zhang, Effects of temperature on the ferromagnetism of Mn-doped ZnO nanoparticles and Mn-related Raman vibration. Nanotechnology, 17, 1520–1526 (2006)

    CAS  Google Scholar 

  25. Y.M. Hu, C.Y. Wang, S.S. Lee, T.C. Han, W.Y. Chou, G.L. Chen, Identification of Mn related Raman modes in Mn-doped ZnO thin films. J. Raman Spectrosc. 42, 434–437 (2011)

    CAS  Google Scholar 

  26. J. Alaria, P. Turek, M. Bernard, M. Bouloudenine, A. Berbadj, N. Brihi, G. Schmerber, S. Colis, A. Dinia, No ferromagnetism in Mn doped ZnO. Chem. Phys. Lett. 415, 337–341 (2000)

    Google Scholar 

  27. N. Brihi, A. Bouaine, A. Berbadj, G. Schmerber, S. Colis, A. Dinia, Growth and characterizations of ZnO nanorod/film structures on copper coated Si substrates. Thin Solid Films 518, 1549–4552 (2010)

    Google Scholar 

  28. J. Alaria, M. Bouloudenine, G. Schmerber, S. Colis, A. Dinia, P. Turek, M. Bernard, Pure paramagnetic behavior in Mn-doped ZnO semiconductors. J. Appl. Phys. 99, 08M118–08M121 (2000)

    Google Scholar 

  29. H.Y. Xu, Y.C. Liu, C.S. Xu, Y.X. Liu, C.L. Shao, R. Mu, Structural, optical, andmagnetic properties of Mn-doped ZnO thin film. J. Chem. Phys. 124, 074707–074710 (2006)

    CAS  Google Scholar 

  30. D Hu et.al., Structural and optical properties of Mn-doped ZnO nanocrystalline thin films with the different dopant concentrations. Physica E 61, 14–22 (2014)

    CAS  Google Scholar 

  31. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 83, 1974–1976 (2000)

    Google Scholar 

  32. F.J. Manjon, B. Marí, J. Serrano, A.H. Romero, Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. 97, 053516–053519 (2005)

    Google Scholar 

  33. J. Panda, I. Sasmal, T.K. Nath, Magnetic and optical properties of Mn-doped ZnO vertically aligned nanorods synthesized by hydrothermal technique. AIP Adv. 6, 035118 (2016)

    Google Scholar 

  34. R.K. Sharma, S. Patel, K.C. Pargaien, Synthesis, characterization and properties of Mn-doped ZnO nanocrystals. Adv. Nat. Sci. 3, 035005–035009 (2005)

    Google Scholar 

  35. K. Sakai, T. Kakeno, T. Ikari, S. Shirakata, T. Sakemi, K. Awai, T. Yamamoto, Defect centers and optical absorption edge of degenerated semiconductor ZnO thin films. J. Appl. Phys. 99, 043508–043514 (2006)

    Google Scholar 

  36. Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley, M.N.R. Ashfold, Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chem. Phys. Lett. 431, 352–357 (2006)

    CAS  Google Scholar 

  37. M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, T.A. Saleh, Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl. Surf. Sci. 256, 298–304 (2009)

    CAS  Google Scholar 

  38. S. Wang, Z. Xu., One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 11, 1013–1098 (2011)

    Google Scholar 

  39. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Electronic structure of ZnO and its defects. Sci. China A 44, 1174–1181 (2001)

    CAS  Google Scholar 

  40. P. Uthirakumar, C.H. Hong, Effect of annealing temperature and pH on morphology and optical property of highly dispersible ZnO nanoparticles. Mater. Charact. 60, 1305–1310 (2009)

    CAS  Google Scholar 

  41. C.S. Lin, C.C. Hwang, W.H. Lee, W.Y. Tong, Preparation of zinc oxide (ZnO) powders with different types of morphology by a combustion synthesis method. Mater. Sci. Eng. B 140, 31–37 (2007)

    CAS  Google Scholar 

  42. R.S. Zeferino, M.B. Flores, U. Pal, Photoluminescence and Raman scattering in Ag doped ZnO Nanoparticles. J. Appl. Phys. 109, 014308–14313 (2011)

    Google Scholar 

  43. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7990 (1996)

    CAS  Google Scholar 

  44. Y.B. Lin, Y.M. Yang, B. Zhuang, S.L. Huang, L.P. Wu, Z.G. Huang, F.M. Zhang, Y.W. Du, Ferromagnetism of Co-doped TiO2 films prepared by plasma enhanced chemical vapour deposition (PECVD) method. J. Phys. D 41, 195007–1955016 (2008)

    Google Scholar 

  45. Y. Tian, Y. Li, M. He, I.A. Putra, H. Peng, B. Yao, S.A. Cheong, T. Wu, Bound magnetic polarons and p-d exchange interaction in ferromagnetic insulating Cu-doped ZnO. Appl. Phys. Lett. 98, 162503–162505 (2011)

    Google Scholar 

  46. H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S.X. Li, E.E. Haller, Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl. Phys. Lett. 82, 2023–2025 (2003)

    CAS  Google Scholar 

  47. A. Dijken Van, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission. J. Lumin. 454, 87–89 (2000)

    Google Scholar 

  48. C. Chiorescu, J.L. Cochin, J.J. Neumeier, Magnetic inhomogeneity and magnetotransport in electron-doped Ca1–xLaxMnO3(0 ≤ x ≤ 0.10). Phys. Rev. B 73, 0202406–0202410 (2006)

    Google Scholar 

  49. S. Kolesnik, B. Dabrowski, Absence of room temperature ferromagnetism in bulk Mn doped ZnO. J. Appl. Phys. 96, 5379–5381 (2004)

    CAS  Google Scholar 

  50. J. Spalck, A. Lewicki, Z. Tarnawski, J.K. Furdyna, R.R. Galazka, Z. Obuszko, Magnetic susceptibility of semimagnetic semiconductors: the high-temperature regime and the role of superexchange. Phys. Rev. B 33, 3407–3418 (1986)

    Google Scholar 

  51. S. Kolesnik, B. Dabrowski, J. Mais, Structural and magnetic properties of transition metal substituted ZnO. J. Appl. Phys. 95, 2582–2586 (2004)

    CAS  Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge the financial support from SERB-DST, Government of India for this work via Project (File No. PDF/2016/000579). Gunjan Srinet is thankful to JIIT for the experimental facilities for this piece of work. Subhash Sharma, acknowledges support from DGPA – UNAM Postdoc fellowship. One of the authors JMS, acknowledges support from CoNaCyT, Grant 280309 and PAPIIT-DGAPA-UNAM Grant No. IN105307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinet, G., Sharma, S., Prajapati, B. et al. Investigations on the physical properties of Mn-modified ZnO samples prepared by sol–gel route. J Mater Sci: Mater Electron 29, 9930–9941 (2018). https://doi.org/10.1007/s10854-018-9035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9035-y

Navigation