Skip to main content

Advertisement

Log in

One-pot synthesis of highly luminescent and color-tunable water-soluble Mn:ZnSe/ZnS core/shell quantum dots by microwave-assisted method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, microwave-assisted method was used for rapid synthesis of highly luminescent Mn-doped ZnSe/ZnS core/shell nanocrystals in aqueous phase. A series of nanocrystals with different size was prepared in 1 h under proper condition. The as-prepared Mn-doped ZnSe/ZnS QDs exhibit the emission in the range of 565–602 nm and the highest photoluminescence quantum yield reached up to 36.3% under the optimal reaction condition. The optical properties and structure of the Mn:ZnSe/ZnS QDs have been characterized by PL spectroscopy, UV–Vis, TEM, XRD and XPS. The effects of various experimental variables, including the reaction pressure, the pH value of reaction solution, the ratio of Zn to ligand (MPA), and the post-treatment on the optical properties of the Mn:ZnSe/ZnS QDs were investigated systematically. The as-prepared MPA coated Mn-doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions in water, the result shows that the QD-based metal ions sensor possesses high sensitivity and selectivity, and could be applied for the quantification analysis of Hg2+ ions in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.J. Marcel, M. Mario, G. Peter, W. Shimon, A.P. Alivisatos, Science 281, 2013 (1998)

    Article  Google Scholar 

  2. W.C.W. Chan, S.M. Nie, Science 281, 2016 (1998)

    Article  Google Scholar 

  3. M. Han, X. Gao, J.Z. Su, S.M. Nie, Nat. Biotechnol. 19, 631 (2001)

    Article  Google Scholar 

  4. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435 (2005)

    Article  Google Scholar 

  5. J. Weng, J. Ren, Curr. Med. Chem. 13, 897 (2006)

    Article  Google Scholar 

  6. Q.J. Sun, Y.A. Wang, L.S. Li, D.Y. Wang, T. Zhu, J. Xu, C.H. Yang, Y.F. Li, Nat. Photonics 1, 717 (2007)

    Article  Google Scholar 

  7. N. Pradhan, X. Peng, J. Am. Chem. Soc. 129, 3339 (2007)

    Article  Google Scholar 

  8. H.Z. Wang, H. Nakamura, M. Uehara, Y. Yamaguchi, M. Miyazaki, H. Maeda, Adv. Funct. Mater. 15, 603 (2005)

    Article  Google Scholar 

  9. H.Z. Wang, H.Y. Li, M. Uehara, Y. Yamaguchi, H. Nakamura, M. Miyazaki, H. Shimizu, H. Maeda, Chem. Commun. 1, 48 (2004)

    Article  Google Scholar 

  10. M. Green, E. Howman, Chem. Commun. 7, 121 (2005)

    Article  Google Scholar 

  11. R. Bakalova, Z. Zhelev, H. Ohba, Y. Baba, J. Am. Chem. Soc. 127, 9328 (2005)

    Article  Google Scholar 

  12. Y.C. Wang, B. Wu, C.B. Yang, M.X. Liu, T.C. Sum, K.T. Yong, Small 12, 534 (2016)

    Article  Google Scholar 

  13. J. Heo, C.S. Hwang, Nanomaterials 6, 82 (2016)

    Article  Google Scholar 

  14. M. Anilkumar, K.R. Bindu, A.S. Saj, E.I. Anila, Chinese Phys. B 25, 088103 (2016)

    Article  Google Scholar 

  15. T. Kezuka, M. Konishi, T. Isobe, M. Senna, J. Lumin. 418, 87 (2000)

    Google Scholar 

  16. L. Cao, J. Zhang, S. Ren, S. Huang, Appl. Phys. Lett. 80, 4300 (2002)

    Article  Google Scholar 

  17. S. Ethiraj, N. Hebalkar, S.K. Kulkarni, R. Pasricha, J. Urban, C. Dem, M. Schmitt, W. Kiefer, L. Weinhardt, S. Joshi, R. Fink, C. Heske, E. Umbach, J. Chem. Phys. 118, 8945 (2003)

    Article  Google Scholar 

  18. N. Pradhan, D. Goorskey, J. Thessing, X. Peng, J. Am. Chem. Soc. 127, 17586 (2005)

    Article  Google Scholar 

  19. N. Pradhan, D.M. Battaglia, Y. Liu, X. Peng, Nano Lett. 7, 312 (2007)

    Article  Google Scholar 

  20. D.J. Norris, A.L. Efros, S.C. Erwin, Science 319, 1776 (2008)

    Article  Google Scholar 

  21. A. Aboulaich, M. Geszke, L. Balan, J. Ghanbaja, G. Medjahdi, R. Schneider, Inorg. Chem. 49, 10940 (2010)

    Article  Google Scholar 

  22. B.H. Dong, L.X. Cao, G. Su, W. Liu, J. Phys. Chem. C 116, 12258 (2012)

    Article  Google Scholar 

  23. H.F. Qian, X. Qiu, L. Liang, J.C. Ren, J. Phys. Chem. B 110, 9034 (2006)

    Article  Google Scholar 

  24. M.A. Correa-Duarte, M. Giersig, N.A. Kotov, L.M. Liz-Marzan, Langmuir 14, 6430 (1998)

    Article  Google Scholar 

  25. L. Li, H.F. Qian, J.C. Ren, Chem. Commun. 36, 528 (2005)

    Article  Google Scholar 

  26. D.M. Han, C.F. Song, X.Y. Li, Spectrosc Spect Anal. 30, 2331 (2010)

    Google Scholar 

  27. L.W. Jiang, J. Zhou, X.Z. Yang, X.N. Peng, H. Jiang, D.Q. Zhuo, L.D. Chen, X.F. Yu, Chem. Phys. Lett. 510, 135 (2011)

    Article  Google Scholar 

  28. J. Zhang, Q.H. Chen, W.L. Zhang, S.L. Mei, L.J. He, J.T. Zhu, G.P. Chen, R.Q. Guo, Appl. Surf. Sci. 351, 655 (2015)

    Article  Google Scholar 

  29. J.Q. Zhuang, X.D. Zhang, G. Wang, D.M. Li, W.S. Yang, T.J. Li, J. Mater. Chem. 13, 1853 (2003)

    Article  Google Scholar 

  30. P.T. Shao, Q.H. Zhang, Y.G. Li, H.Z. Wang, J. Mater. Chem. 21, 151 (2011)

    Article  Google Scholar 

  31. J.S. Wang, H.E. Smith, G.J. Brown, Mater. Chem. Phys. 154, 44 (2015)

    Article  Google Scholar 

  32. M. Massey, M. Wu, E.M. Conroy, W.R. Algar, Curr. Opin. Biotech. 34, 30 (2015)

    Article  Google Scholar 

  33. Y. Kim, C. Ippen, T. Greco, I. Jang, S. Park, M.S. Oh, C.J. Han, J. Lee, A. Wedel, J. Kim, Electron. Mater. Lett. 10, 479 (2014)

    Article  Google Scholar 

  34. T.G. Kryshtab, L.V. Borkovska, O.F. Kolomys, N.O. Korsunska, V.V. Strelchuk, L.P. Germash, K.Y. Pechers’ka, G. Chornokur, S.S. Ostapenko, C.M. Phelan, O.L. Stroyuk, Superlattice. Microst. 51, 353 (2012)

    Article  Google Scholar 

  35. W.G. Becker, A.J. Bard, J. Phys. Chem. 87, 4888 (1983)

    Article  Google Scholar 

  36. B.A. Du, C. Liu, Y.H. Cao, L.N. Chen, Spectrosc. Spect. Anal. 34, 1070 (2014)

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation (Grant Nos. 21505049) of P. R. China; the Development Program of Science and Technology of Jilin Province (20170520134JH); the Scientific Foundation for Young Scientists of Jilin Normal University (2014005 and 2014007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Chang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 436 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, X., Chen, L., Zhao, C. et al. One-pot synthesis of highly luminescent and color-tunable water-soluble Mn:ZnSe/ZnS core/shell quantum dots by microwave-assisted method. J Mater Sci: Mater Electron 29, 9184–9192 (2018). https://doi.org/10.1007/s10854-018-8946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8946-y

Navigation