Skip to main content
Log in

AC conductivity and dielectric relaxation properties of bulk TlInSe2 prepared from single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dependence of AC conductivity and dielectric properties on the frequency and temperature for TlInSe2 in pellet form obtained from TlInSe2 single crystal were studied in the frequency range of 42 Hz–5 MHz and temperature range of 294–393 K. The structure of TlInSe2 in powder form was examined using X-ray diffraction. TlInSe2 at room temperature was found to be tetragonal system with lattice parameters of a = 8.063 Å and c = 6.827 Å. The structural parameters, such as crystallite size D, micro strain ε, dislocation density δ, and unit cell parameters were determined from XRD spectra. The AC conductivity of the TlInSe2 was found to obey the power law, i.e. \({\sigma }_{ac}\left(\omega \right)= A{\omega }^{s}\). AC conductivity of TlInSe2 was dominated by the correlated barrier hopping (CBH) model. The obtained activation energy values of the AC conductivity have confirmed that the hopping conduction is the dominant one. Where, a decrease in these values has noticed with the increase in frequency. The density of localized states \(N\left({E}_{F}\right)\) close to Fermi level for TlInSe2 was obtained in the range of 1.02–2.8 × 1019 eV−1 cm−3 for various temperatures and frequency. The frequencies corresponding to maxima of the imaginary electric modulus at different temperatures were found to satisfy an Arrhenius law with activation energy ER of 0.32 eV. A decrease in the relaxation time τ was observed with the increase in temperature. The average hopping distance R and the average time of charge carrier hoping between localized states t were found in the range of 6.10–11.95 nm and 2 × 10−7–2.4 × 10−2 s respectively, for the investigated range of frequency and the value of the binding energy Wm was 0.52 eV. The dielectric relaxation mechanism was also explained by the Cole–Cole types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.T. Nagat, S.E. Al Garni, F.S. Bahabri, G. Attia, S.R. AlHardi, A.A. Al Ghamdi, JKAU 21, 13 (2009)

    Google Scholar 

  2. V. Grivickas, V. Bikbajevas, V. Gavriusinas, J. Linnros, Mater. Sci. 12, 279 (2006)

    Google Scholar 

  3. H.A. Elshaikh, Cryst. Res. Technol. 31, 903 (1996)

    CAS  Google Scholar 

  4. K. Mimura, T. Nogami, K. Abe, K. Wakita, M. Arita, N. Mamedov, G. Orudzhev, H. Namatame, M. Taniguchi, Y. Tagchi, K. Ichikawa, Jpn. J. Appl. Phys. 47, 8188 (2008)

    CAS  Google Scholar 

  5. A.G. Abdullaev, K.R. Allakhverdiev, T.D. Ibragimov, R.M. Sardarly, Phys. Status Solidi 128, 401 (2006)

    Google Scholar 

  6. N. Mamedov, K. Wakita, S. Akita, Y. Nakayama, Jpn. J. Appl. Phys. 44, 709 (2005)

    CAS  Google Scholar 

  7. N.M. Gasanly, H. Ozkan, M. Tas, Cryst. Res. Technol. 35, 185 (2000)

    CAS  Google Scholar 

  8. A.F. Qasrawi, N.M. Gasanly, J. Phys. 21, 115801 (2009)

    CAS  Google Scholar 

  9. I.V. Alekseev, Instrumental and Experimental Techniques (Wiley, New York, 2008)

    Google Scholar 

  10. A.F. Qasrawi, F.G. Aljammal, N.M. Taleb, N.M. Gasanly, Phys. B 406, 2740 (2011)

    CAS  Google Scholar 

  11. K.K.K. Mamedov, A.M. Abdullaev, E.M. Kekimova, Phys. Status Solidi 94, 115 (1986)

    CAS  Google Scholar 

  12. I. Samaras, K. Kambas, C. Julien, Mater. Res. Bull. 25, 1 (1990)

    CAS  Google Scholar 

  13. S.N. Mustafaeva, V.A. Ramazanzade, M.M. Asadov, Mater. Chem. Phys. 40, 142 (1995)

    CAS  Google Scholar 

  14. N. Mamedov, K. Wakita, A. Ashida, T. Matsi, K. Morii, Thin Solid Films 499, 275 (2006)

    CAS  Google Scholar 

  15. D. Muller, G. Eulenberger, H. Hahn, Z. Anorg. Allg. Chem. 398, 207 (1973)

    Google Scholar 

  16. J. Banys, T.R. Wondre, G. Guseinov, Mater. Lett. 9, 269 (1990)

    CAS  Google Scholar 

  17. A.A. Ebnalwaled, R.H. Al-Orainy, Appl Phys A 112, 955 (2013)

    CAS  Google Scholar 

  18. A.U. Sheleg, V.G. Hurtavy, S.N. Mustafaeva, E.M. Kerimova, Phys. Solid State 53, 472 (2011)

    CAS  Google Scholar 

  19. A. Shwani, K. Sharma, K.L. Bhatia, J. Non-Cryst. Solids 109, 95 (1989)

    Google Scholar 

  20. M. Pollak, Philos. Magn. 23, 519 (1971)

    CAS  Google Scholar 

  21. A. Ghosh, J. Phys. Rev. B 42, 5665 (1990)

    CAS  Google Scholar 

  22. M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1449 (1972)

    CAS  Google Scholar 

  23. X. Le Cleac’h, J. Phys. 40, 417 (1979)

    Google Scholar 

  24. S.R. Elliott, Philos. Magn. B 36, 1291 (1977)

    CAS  Google Scholar 

  25. K. Shimakawa, Philos. Magn. B 46, 123 (1982)

    CAS  Google Scholar 

  26. G.D. Guseinov, E. Mooser, E.M. Kerimova, R.S. Gamidov, I.V. Alekseev, M.Z. Ismailov, Phys. Status Solidi 34, 33 (1969)

    CAS  Google Scholar 

  27. H.M. Abdelmoneim, Indian J. Pure Appl. Phys. 48, 562 (2010)

    CAS  Google Scholar 

  28. A. Dutta, C. Bharti, T.P. Sinha, Indian J. Eng. Mater. Sci. 15, 181 (2008)

    CAS  Google Scholar 

  29. J.P. Enriquez, N.R. Mathews, G.P. Hernands, X. Mathewo, Mater. Chem. Phys. 142, 432 (2013)

    Google Scholar 

  30. V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012)

    Google Scholar 

  31. S. Anwar, M. Pattanaik, B.K. Mishra, S. Anwar, Mater. Sci. Semicond. Process. 34, 45 (2015)

    CAS  Google Scholar 

  32. E. Lifshim, X-ray Characterization of Materials (Wiley, New York 1999)

    Google Scholar 

  33. E. Ouachtari, A. Kmili, S.B. Eldrissi, A. Bouaoud, H. Erguig, P. Elies, I. Mod. Phys. 2, 1073 (2001)

    Google Scholar 

  34. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    CAS  Google Scholar 

  35. M.A. Ahmed, U. Seddik, N.G. Imam, World J. Condens. Matter Phys. 2, 66 (2012)

    CAS  Google Scholar 

  36. M.A. Ahmed, N. Okasha, R.M. Kershi, J. Magn. Magn. Mater. 321, 3967 (2009)

    CAS  Google Scholar 

  37. S.R. Elliott, Solid State Commun. 28, 939 (1978)

    CAS  Google Scholar 

  38. F. Yakuphanoglu, I.S. Yahia, B.F. Senkal, G.B. Sakr, W.A. Farooq, Synth. Met. 161, 817 (2011)

    CAS  Google Scholar 

  39. B.K. Chaudhuri, K. Chaudhuri, K.K. Som, J. Phys. Chem. Solids 50, 1147 (1989)

    Google Scholar 

  40. I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)

    CAS  Google Scholar 

  41. S.N. Mustafeva, M.M. Asadov, K.S. Qahramanov, Semicond. Phys. Quant. Electron. Optoelectron. 10, 58 (2007)

    Google Scholar 

  42. N. Mustafeave, Phys. Solid State 46, 1008 (2004)

    Google Scholar 

  43. M.M. El-Nahass, S.B. Youssef, H.A.M. Ali, A. Hassan, Eur. Phys. J. Appl. Phys. 55, 10101 (2011)

    Google Scholar 

  44. S.J. Yaghmour, Eur. Phys. J. Appl. Phys. 49, 10402 (2010)

    Google Scholar 

  45. B. Tareev, Physics of Dielectric Materials. (Mir Publishers, Moscow, 1975)

    Google Scholar 

  46. R. Ayouchi, D. Leinen, F. Martin, M. Gabas, E. Dalchiele, J.R. Ramos-Barrado, Thin Solid Films 426, 68 (2003)

    CAS  Google Scholar 

  47. R.K. Dixon, Phys. Rev. B 42, 8179 (1990)

    CAS  Google Scholar 

  48. H. Smaoui, L.F.L. Mir, H. Guermazi, S. Agnel, A. Toureille, J. Alloys Compd. 477, 316 (2009)

    CAS  Google Scholar 

  49. A.A. Attia, H.S. Soliman, M.M. Saadeldin, K. Sawaby, Synth. Met. 205, 139 (2015)

    CAS  Google Scholar 

  50. A.S. Riad, M.T. Korayem, T.G. Aabdel, Malik, Phys. B 270, 140 (1999)

    CAS  Google Scholar 

  51. A. Goswami, A.P. Goswami, Thin Solid Films 16, 175 (1973)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Dr. M.M. El-Nahass; Department of Physics, Ain Shams university, for supplying the sample material of this research and his fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Attia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, A.A., Seyam, M.A.M. & Nemr, S.S. AC conductivity and dielectric relaxation properties of bulk TlInSe2 prepared from single crystal. J Mater Sci: Mater Electron 29, 7325–7332 (2018). https://doi.org/10.1007/s10854-018-8722-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8722-z

Navigation