Skip to main content
Log in

Capacitive gas and vapor sensors using nanomaterials

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An immense number of sensors has been reported in the literature employing various methods for the detection of different gases and vapors. This article summarizes those sensors whose sensing layer is made up of nanostructured materials and a change in capacitance value of device is the key parameter for detecting a gas or vapor. Now-a-days, capacitive sensors are emerging as they consume less power, operate well at room temperature and show decent response and recovery time. The sensing principles, configurations, mechanisms and performances of capacitive sensors based on different nanostructures are summarized and discussed in the current article. Emerging carbon based nanomaterials like carbon nanotube and graphene are also highlighted for capacitive mode detection of gases and vapors. Finally, an outlook of primary challenges in this field are identified and discussed at the end of the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced from Ref. [51] with permission from Elsevier

Fig. 3

Reproduced from Ref. [56] with permission from Elsevier

Fig. 4
Fig. 5
Fig. 6

Reproduced from Ref. [61] with permission from Elsevier

Fig. 7

Reproduced from Ref. [62] with permission from Elsevier

Fig. 8

Reproduced from Ref. [50] with permission from Elsevier

Fig. 9

Reproduced from Ref. [59, 65, 68] with permission from Elsevier

Fig. 10

Reproduced from Ref. [59, 65, 68] with permission from Elsevier

Fig. 11

Reproduced from Ref. [76] with permission from Elsevier

Fig. 12

Reproduced from Ref. [78] with permission from Elsevier

Fig. 13

Reproduced from Ref. [67, 76, 78] with permission from Elsevier

Fig. 14

Reproduced from Ref. [80] with permission from Elsevier

Fig. 15

Reproduced from Ref. [79] with permission from Elsevier

Fig. 16

Reproduced from Ref. [81] with permission from Elsevier

Fig. 17

Reproduced from Ref. [28] with permission from IEEE and from Ref. [31, 82] with permission from Elsevier

Fig. 18

Reproduced from Ref. [31] with permission from Elsevier

Fig. 19

Reproduced from Ref. [83] with permission from Elsevier

Fig. 20

Reproduced from Ref. [96] with permission from Nature

Fig. 21

Reproduced from Ref. [12] with permission from Elsevier

Similar content being viewed by others

References

  1. R. Li, S. Chen, Z. Lou, L. Li, T. Huang, Y. Song, D. Chen, G. Shen, Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity. Sens. Actuators B 252, 79–85 (2017)

    Article  Google Scholar 

  2. A. Hazra, S.K. Hazra, E. Bontempi, V.N. Lakshmi, S. Sinha, C.K. Sarkar, S. Basu, Anodically grown nanocrystalline titania thin film for hydrogen gas sensors—a comparative study of planar and MAIM device configurations. Sens. Actuators B 188, 787–796 (2013)

    Article  Google Scholar 

  3. M.N. Kavalenka, C.C. Striemer, J.S. DesOrmeaux, J.L. McGrath, P.M. Fauchet, Chemical capacitive sensing using ultrathin flexible nanoporous electrodes. Sens. Actuators B 162, 22–26 (2012)

    Article  Google Scholar 

  4. S.V. Patel, T.E. Mlsna, B. Fruhberger, E. Klaassen, S. Cemalovic, D.R. Baselt, Chemicapacitive microsensors for volatile organic compound detection. Sens. Actuators B 96, 541 (2003)

    Article  Google Scholar 

  5. S. Satyanarayana, D.T. McCormick, A. Majumdar, Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens. Actuators B 115, 494 (2006)

    Article  Google Scholar 

  6. J.D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, T.L. Ferrell, Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array. Appl. Phys. Lett. 83, 3428 (2003)

    Article  Google Scholar 

  7. K.K. Park, H.J. Lee, G.G. Yaralioglu, A.S. Ergun, O. Oralkan, M. Kupnik, C.F. Quate, B.T. Khuri-Yakub, T. Braun, J.-P. Ramseyer, H.P. Lang, M. Hegner, C. Gerber, J.K. Gimzewski, Capacitive micromachined ultrasonic transducers for chemical detection in nitrogen. Appl. Phys. Lett. 91, 094102 (2007)

    Article  Google Scholar 

  8. H. Taghinejad, M. Taghinejad, M. Abdolahad, A. Saeidi, S. Mohajerzadeh, Fabrication and modeling of high sensitivity humidity sensors based on doped silicon nanowires. Sens. Actuators B 176, 413–419 (2013)

    Article  Google Scholar 

  9. A.M. Kummer, A. Hierlemann, H. Baltes, Tuning sensitivity and selectivity of complementary metal oxide semiconductor-based capacitive chemical microsensors. Anal. Chem. 76, 2470 (2004)

    Article  Google Scholar 

  10. R. Igreja, C.J. Dias, Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sens. Actuators A 112, 291–301 (2004)

    Article  Google Scholar 

  11. M. Babaei, N. Alizadeh, Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis. Sens. Actuators B 183, 617–626 (2013)

    Article  Google Scholar 

  12. Y. Chen, F. Meng, M. Li, J. Liu, Novel capacitive sensor: Fabrication from carbon nanotube arrays and sensing property characterization. Sens. Actuators B 140, 396–401 (2009)

    Article  Google Scholar 

  13. J.A. Robinson, E.S. Snow, F.K. Perkins, Improved chemical detection using single walled carbon nanotube network capacitors. Sens. Actuators A 135, 309–314 (2007)

    Article  Google Scholar 

  14. N.L. Teradal, S. Marx, A. Moraga, R. Jelinek, Porous graphene oxide chemi-capacitor vapor sensor array. J. Mater. Chem. C 5, 1128–1135 (2017)

    Article  Google Scholar 

  15. N.M. Kiasari, S. Soltanian, B. Gholamkhass, P. Servati, Room temperature ultra-sensitive resistive humidity sensor based on single zinc oxide nanowire. Sens. Actuators A 182, 101–105 (2012)

    Article  Google Scholar 

  16. D. Jung, M. Han, G.S. Lee, Humidity-sensing characteristics of multi-walled carbon nanotube sheet. Mater. Lett. 122, 281–284 (2014)

    Article  Google Scholar 

  17. Y. Wu, T. Zhang, Y. Rao, Y. Gong, Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B 155, 258–263 (2011)

    Article  Google Scholar 

  18. Y. Li, M.J. Yang, Y. She, Humidity sensors using in situ synthesized sodiumpolystyrenesulfonate/ZnO nanocomposites. Talanta 62, 707–712 (2004)

    Article  Google Scholar 

  19. I. Venditti, I. Fratoddi, A. Bearzotti, Self-assembled copolymeric nanoparticles as chemically interactive materials for humidity sensors. Nanotechnology 21, 355502 (2010)

    Article  Google Scholar 

  20. Y. Shen, W. Wang, A. Fan, D. Wei, W. Liu, C. Han, Y. Shen, D. Meng, X. San, Highly sensitive hydrogen sensors based on SnO2 nanomaterials with different morphologies. Int. J. Hydrogen Energy 40(45), 15773–15779 (2015)

    Article  Google Scholar 

  21. F. Yavari, N. Koratkar, G.-B.C. Sensors, J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)

    Article  Google Scholar 

  22. M.A. Ponce, R. Parra, R. Savu, E. Joanni, P.R. Bueno, M. Cilense, J.A. Varela, M.S. Castro, Impedance spectroscopy analysis of TiO2 thin film gas sensors obtained from water-based anatase colloids. Sens. Actuators B 139, 447–452 (2009)

    Article  Google Scholar 

  23. A. Hazra, K. Dutta, B. Bhowmik, P.P. Chattopadhyay, P. Bhattacharyya, Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array. Appl. Phys. Lett. 105, 081604 (2014)

    Article  Google Scholar 

  24. A. Hazra, S. Das, J. Kanungo, C.K. Sarkar, S. Basu, Studies on a resistive gas sensor based on sol–gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection. Sens. Actuators B 183, 87–95 (2013)

    Article  Google Scholar 

  25. X. Chen, C.K.Y. Wong, C.A. Yuan, G. Zhang, Nanowire-based gas sensors. Sens. Actuators B. 177, 178–195 (2013)

    Article  Google Scholar 

  26. S. Tian, F. Yang, D. Zeng, C. Xie, Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J. Phys. Chem. 116, 10586–10591 (2012)

    Google Scholar 

  27. Y.M. Wong, W.P. Kang, J.L. Davidson, A. Wisitsora-at, K.L. Soh, A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sens. Actuators B 93, 327–332 (2003)

    Article  Google Scholar 

  28. A. Hazra, P. Bhattacharyya, Tailoring of the gas sensing performance of TiO2 nanotubes by 1-D vertical electron transport technique. IEEE Trans. Electron Devices 61, 3483–3489 (2014)

    Article  Google Scholar 

  29. K. Skucha, Z. Fan, K. Jeon, A. Javey, B. Boser, Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sens. Actuators B 145, 232–238 (2010)

    Article  Google Scholar 

  30. L.Y. Li, Y.F. Dong, W.F. Jiang, H.F. Ji, X.J. Li, High-performance capacitive humidity sensor based on silicon nanoporous pillar array. Thin Solid Films. 517, 948–951 (2008)

    Article  Google Scholar 

  31. S. Homayoonnia, S. Zeinali, Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection. Sens. Actuators B 237, 776–786 (2016)

    Article  Google Scholar 

  32. L. Liu, C. Guo, S. Li, L. Wang, Q. Dong, W. Li, Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens. Actuators B 150, 806–810 (2010)

    Article  Google Scholar 

  33. M.T. Soo, K.Y. Cheong, A.F.M. Noor, Advances of SiC-based MOS capacitor hydrogen sensors for harsh environment applications. Sens. Actuators B 151, 39–55 (2010)

    Article  Google Scholar 

  34. J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K. Cho, H.J. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)

    Article  Google Scholar 

  35. T. Someya, J. Small, P. Kim, C. Nuckolls, J.T. Yardley, Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett. 3, 877–888 (2003)

    Article  Google Scholar 

  36. P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000)

    Article  Google Scholar 

  37. T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Recent progress in carbon nanotube-based gas sensors. Nanotechnology. 19, 332001 (2008)

    Article  Google Scholar 

  38. J. Yua, H. Wen, M. Shafiei, M.R. Field, Z.F. Liu, W. Wlodarski, N. Motta, Y.X. Li, K. Kalantar-zadeh, P.T. Lai, A hydrogen/methane sensor based on niobium tungsten oxide nanorods synthesized by hydrothermal method. Sens. Actuators B 184, 118–129 (2013)

    Article  Google Scholar 

  39. A. Modi, N. Koratkar, E. Lass, B.Q. Wei, P.M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171–174 (2003)

    Article  Google Scholar 

  40. E.S. Snow, F.K. Perkins, Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors. Nano Lett. 5, 2414–2417 (2005)

    Article  Google Scholar 

  41. K. Lui, M. Vest, P. Berlowitz, S. Akhter, H.H. Kung, Desorption of Zn from ZnO single-crystal surfaces during temperature programmed decomposition of methanol, formic acid, and 2-propanol. J. Phys. Chem. 90, 3183–3187 (1986)

    Article  Google Scholar 

  42. P.G. Smith, Introduction to Food Process Engineering, (Springer, New York, 2011), 28–34

    Book  Google Scholar 

  43. J.M. Castillo, Relative humidity: sensors, management and environmental effects. Nova Sci. Publishers 1–5 (2011)

  44. C.L. Zhao, M. Qin, W.H. Li, Q.A. Huang, Enhanced Performance of a CMOS Interdigital Capacitive Humidity Sensor by Graphene Oxide, 16th International Solid-State Sensors (Actuators and Microsystems Conference, Beijing, 2011), pp. 1954–1957

    Google Scholar 

  45. M. Rahimabady, C.Y. Tan, S.Y. Tan, S. Chen, L. Zhang, Y.F. Chen, K. Yao, K. Zang, A. Humbert, D. Soccol, M. Bolt, Dielectric nanocomposite of diphenylethylenediamine and P-type multi-walled carbon nanotube for capacitive carbon dioxide sensors. Sens. Actuators B 243, 596–601 (2017)

    Article  Google Scholar 

  46. T. Ishihara, S. Matsubara, Capacitive type gas sensors. J. Electroceram. 2, 215–228 (1998)

    Article  Google Scholar 

  47. M.S. Hosseini, S. Zeinali, M.H. Sheikhi, Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sens. Actuators B 230, 9–16 (2016)

    Article  Google Scholar 

  48. J.T.W. Yeow, J.P.M. She, Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor. Nanotechnology. 17, 5441–5448 (2006)

    Article  Google Scholar 

  49. E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Chemical detection with a single-walled carbon nanotube capacitor. Science. 307, 1942–1945 (2005)

    Article  Google Scholar 

  50. X.J. Li, S.J. Chen, C.Y. Feng, Characterization of silicon nanoporous pillar array as room-temperature capacitive ethanol gas sensor. Sens. Actuators B 123, 461–465 (2007)

    Article  Google Scholar 

  51. C. Lu, Z. Chen, K. Saito, Hydrogen sensors based on Ni/SiO2/Si MOS capacitors. Sens. Actuators B 122, 556–559 (2007)

    Article  Google Scholar 

  52. M. Armgarth, D. Söderberg, I. Lundström, Palladium and platinum gate metal oxide semiconductor capacitors in hydrogen and oxygen mixtures. Appl. Phys. Lett. 41, 654–655 (1982)

    Article  Google Scholar 

  53. C. Lu, Z. Chen, MOS hydrogen sensor with very fast response based on ultra-thin thermal SiO2 film. Int. J. Hydrogen Energy. 35, 12561–12567 (2010)

    Article  Google Scholar 

  54. A. Labidi, C. Jacolin, M. Bendahan, A. Abdelghani, J. Guérin, K. Aguir, M. Maaref, Impedance spectroscopy on WO3 gas sensor. Sens. Actuators B 106, 713–718 (2005)

    Article  Google Scholar 

  55. B.G. Streetman, S. Banerjee, Solid State Electronic Devices, PHI, Fifth Edition, 2000

  56. L.F. Aval, S.M. Elahi, E. Darabi, S.A. Sebt, Comparison of the MOS capacitor hydrogen sensors with different SiO2 film thicknesses and a Ni-gate film in a 4% hydrogen–nitrogen mixture. Sens. Actuators B 216, 367–373 (2015)

    Article  Google Scholar 

  57. J. Lin, E. Obermeier, Capacitive thin film gas sensor with signal processing system for determination of SO2. Sens. Actuators B 16, 319–322 (1993)

    Article  Google Scholar 

  58. P.M. Faia, E.L. Jesus, C.S. Louro, TiO2:WO3 composite humidity sensors doped with ZnO and CuO investigated by impedance spectroscopy. Sens. Actuators B 203, 340–348 (2014)

    Article  Google Scholar 

  59. L.L. Wang, H.Y. Wang, W.C. Wang, K. Li, X.C. Wang, X.J. Li, Capacitive humidity sensing properties of ZnO cauliflowers grown on silicon nanoporous pillar array. Sens. Actuators B 177, 740–744 (2013)

    Article  Google Scholar 

  60. M. Kaur, S.K. Gupta, C.A. Betty, V. Saxena, V.R. Katti, S.C. Gadkari, J.V. Yakhmi, Detection of reducing gases by SnO2 thin films: an impedance spectroscopy study. Sens. Actuators B 107, 360–365 (2005)

    Article  Google Scholar 

  61. J. Wang, M. Su, J. Qi, L. Chang, Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors. Sens. Actuators B 139, 418–424 (2009)

    Article  Google Scholar 

  62. Y. Li, W.F. Jiang, S.H. Xiao, Y.F. Dong, H.F. Ji, X.J.Li, Effect of electrode configuration on capacitive humidity sensitivity of silicon nanoporous pillar array. Physica E 41, 621–625 (2009)

    Article  Google Scholar 

  63. W.F. Jiang, S.H. Xiao, C.Y. Feng, H.Y. Li, X.J. Li, Resistive humidity sensitivity of arrayed multi-wall carbon nanotube nests grown on arrayed nanoporous silicon pillars. Sens. Actuators B 125, 651–655 (2007)

    Article  Google Scholar 

  64. W. Li, E. Dai, G. Bai, J. Xu, Depth-dependent humidity sensing properties of silicon nanopillar array. Sens. Actuators B 237, 526–533 (2016)

    Article  Google Scholar 

  65. L.L. Wang, L.P. Kang, H.Y. Wang, Z.P. Chen, Xin Jian Li, Capacitive humidity sensitivity of SnO2:Sn thin film grown on silicon nanoporous pillar array. Sens. Actuators B 229, 513–519 (2016)

    Article  Google Scholar 

  66. H.J. Xu, X.J. Li, Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence. Opt. Express. 16, 2933–2941 (2008)

    Article  Google Scholar 

  67. Z. Wang, C. Song, H. Yin, J. Zhang, Capacitive humidity sensors based on zinc oxide nanorods grown on silicon nanowires arrays at room temperature. Sens. Actuators A 235, 234–239 (2015)

    Article  Google Scholar 

  68. H.Y. Wang, Y.Q. Wang, Q.F. Hu, X.J. Li, Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array., Sens. Actuators B 166–167, 451–456 (2012)

    Article  Google Scholar 

  69. A. Salomonsson, S. Roy, C. Aulin, J. Cerdà, P.O. Käll, L. Ojamäe, M. Strand, M. Sanati, A.L. Spetz, Nanoparticles for long-term stable, more selective MISiCFET gas sensors. Sens. Actuators B 107, 831–838 (2005)

    Article  Google Scholar 

  70. R. Loloee, B. Chorpening, S. Beer, R.N. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors. Sens. Actuators B 129, 200–210 (2008)

    Article  Google Scholar 

  71. F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier, M. Eickhoff, A highly stable SiC based microhotplate NO2 gas-sensor. Sens. Actuators B 78, 216–220 (2001)

    Article  Google Scholar 

  72. N.G. Wright, A.B. Horsfall, SiC sensors: a review. J. Phys. D: Appl. Phys. 40, 6345–6354 (2007)

    Article  Google Scholar 

  73. Y. Qiu, S. Yang, ZnO nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing. Adv. Func. Mater. 17, 1345–1352 (2007)

    Article  Google Scholar 

  74. X. Hu, J. Gong, L. Zhang, J.C. Yu, Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing. Adv. Mater. 20, 4845–4850 (2008)

    Article  Google Scholar 

  75. Q. Qi, T. Zhang, Q.J. Yu, R. Wang, Y. Zeng, L. Liu, H.B. Yang, Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing. Sens. Actuators B 133, 638–643 (2008)

    Article  Google Scholar 

  76. B. Tao, J. Zhang, F. Miao, H. Li, L. Wan, Y. Wang, Capacitive humidity sensors based on Ni/SiNWs nanocomposites. Sens. Actuators B 136, 144–150 (2009)

    Article  Google Scholar 

  77. H.T. Hsueh, T.J. Hsueh, S.J. Chang, F.Y. Hung, W.Y. Weng, C.L. Hsu, B.T. Dai, Si nanowire-based humidity sensors prepared on glass substrate. IEEE Sens. J. 11, 3036–3041 (2011)

    Article  Google Scholar 

  78. X. Chen, J. Zhang, Z. Wang, Q. Yan, S. Hui, Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification. Sens. Actuators B 156, 631–636 (2011)

    Article  Google Scholar 

  79. K. Narimani, F.D. Nayeri, M. Kolahdouz, P. Ebrahimi, Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods. Sens. Actuators B 224, 338–343 (2016)

    Article  Google Scholar 

  80. Y. Lee, C. Huang, H. Chen, H. Yang, Low temperature solution-processed ZnO nanorod arrays with application to liquid ethanol sensors. Sens. Actuators B 189, 307–312 (2013)

    Article  Google Scholar 

  81. X. Zhou, J. Li, M. Ma, Q. Xue, Effect of ethanol gas on the electrical properties of ZnO nanorods. Physica E. 43, 1056–1060 (2011)

    Article  Google Scholar 

  82. X. Song, Q.Q.T. Zhang, C. Wang, A humidity sensor based on KCl-doped SnO2 nanofibers. Sens. Actuators B 138, 368–373 (2009)

    Article  Google Scholar 

  83. K. Dutta, A. Hazra, P. Bhattacharyya, Ti/TiO2 nanotube array/Ti capacitive device for non-polar aromatic hydrocarbon detection. IEEE Trans. Device Mater. Reliab. 16, 235–242 (2016)

    Article  Google Scholar 

  84. T. Terencio, F. Di Renzo, D. Berthomieu, P. Trens, Adsorption of acetone vapor by Cu-BTC: an experimental and computational study. J. Phys. Chem. C. 117, 26156–26165 (2013)

    Article  Google Scholar 

  85. P. Davydovskaya, A. Ranft, B.V. Lotsch, R. Pohle, Analyte detection with Cu-BTC metal–organic framework thin films by means of mass-sensitive and work-function-based readout. Anal. Chem. 86, 6948–6958 (2014)

    Article  Google Scholar 

  86. Z. Wang, L. Shi, F. Wu, S. Yuan, Y. Zhao, M. Zhang, The sol-gel template synthesis of porous TiO2 for a high performance humidity sensor. Nanotechnology 22, 275502–275510 (2011)

    Article  Google Scholar 

  87. D. Li, Y.N. Xia, Fabrication of titania nanofibers by electrospinning. Nano Lett. 3, 555–560 (2003)

    Article  Google Scholar 

  88. Y. Zhang, H. Li, L. Pan, T. Lu, Z. Sun, Capacitive behavior of graphene–ZnO composite film for supercapacitors. J. Electroanal. Chem. 634, 68–71 (2009)

    Article  Google Scholar 

  89. S. Dhall, N. Jaggi, R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens. Actuators A 201, 321–327 (2013)

    Article  Google Scholar 

  90. J. Suehiro, H. Imakiire, S. Hidaka, W. Ding, G. Zhou, K. Imasaka, M. Hara, Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis. Sens. Actuators B 114, 943–949 (2006)

    Article  Google Scholar 

  91. S.G. Wang, Q. Zhang, D.J. Yang, P.J. Sellin, G.F. Zhong, Multi-walled carbon nanotube-based gas sensors for NH3 detection. Diam. Relat. Mater. 13, 1327–1332 (2004)

    Article  Google Scholar 

  92. S. Basu, P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B 173, 1–21 (2012)

    Article  Google Scholar 

  93. A. Ghosh, D. Late, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, NO2 and humidity sensing characteristics of few-layer graphenes. J. Exp. Nanosci. 4, 313–322 (2009)

    Article  Google Scholar 

  94. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)

    Article  Google Scholar 

  95. M.T. Ahmadi, R. Ismail, S. Anwar, Handbook of Research on Nanoelectronic Sensor Modeling and Applications, IGI Global 2016

  96. H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3, 2714 (2013)

    Article  Google Scholar 

  97. S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhanen, Ultrafast Graphene Oxide Humidity Sensors. ACS Nano 7, 11166–11173 (2013)

    Article  Google Scholar 

  98. S. Chopra, K. McGuire, N. Gothard, A.M. Rao, A. Pham, Selective gas detection using a carbon nanotube sensor. Appl. Phys. Lett. 83, 2280–2282 (2003)

    Article  Google Scholar 

  99. V. Vizcaino, M. Jelisavcic, J.P. Sullivan, S.J. Buckman, Elastic electron scattering from formic acid (HCOOH): absolute differential cross-sections. New J. Phys. 8, 85–93 (2006)

    Article  Google Scholar 

  100. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940)

    Article  Google Scholar 

  101. Y. Wang, S. Park, J.T.W. Yeow, A. Langner, F. Müller, A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators B 149, 136–142 (2010)

    Article  Google Scholar 

  102. M. Agarwal, M.D. Balachandran, S. Shrestha, K. Varahramyan, SnO2 nanoparticle-based passive capacitive sensor for ethylene detection. J. Nanomater. 2012, 145406–145410 (2012)

    Article  Google Scholar 

  103. F. Miao, B. Tao, L. Sun, T. Liu, J. You, L. Wang, P.K. Chu, Capacitive humidity sensing behavior of ordered Ni/Si microchannel plate nanocomposites. Sens. Actuators A 160, 48–53 (2010)

    Article  Google Scholar 

  104. H. Chen, Q. Xue, M. Ma, X. Zhou, Capacitive humidity sensor based on amorphous carbon film/Si heterojunctions. Sens. Actuators B 150, 487–489 (2010)

    Article  Google Scholar 

  105. L. Chen, J. Zhang, Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods. Sens. Actuators A 178, 88–93 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Early Carrier Research Grant (Lett. No. ECR/2015/000345) by SERB, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hazra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bindra, P., Hazra, A. Capacitive gas and vapor sensors using nanomaterials. J Mater Sci: Mater Electron 29, 6129–6148 (2018). https://doi.org/10.1007/s10854-018-8606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8606-2

Navigation