Skip to main content
Log in

Preparation of composite Ag@Au core–shell nanoparticles and their linear and nonlinear optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We herein report the preparation of composite Ag@Au core–shell nanoparticles (NPs) through galvanic replacement reaction and the investigations of linear and nonlinear optical properties. TEM micrographs envisage the formation of core–shell NPs. EDS elemental mapping images demonstrate the homogeneous distribution of the elements and their chemical composition. The powder XRD pattern confirms the formation of highly crystalline composite Ag@Au core–shell NPs. The UV–Vis absorption spectrum shows contribution of Ag and Au characteristic absorption bands and the slight red shift provides the strong evidence for coating of Au shell over the Ag core. Moreover, the linear optical parameters such as the extinction coefficient, reflectance, refractive index, conductivity, susceptibility and polarizability are studied. z-scan analysis reveals the enhanced nonlinear optical properties of the composite Ag@Au core–shell NPs with nonlinear refraction coefficient (n2) being ten times higher than that of Ag NPs and eight times increase in comparison with that of Au NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Lance Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  2. H. Karimi-Maleh, M. Hatami, R. Moradi, M.A. Khalilzadeh, S. Amiri, H. Sadeghifar, Microchim. Acta 183, 2957 (2016)

    Article  Google Scholar 

  3. P. Dauthal, M. Mukhopadhyay, Ind. Eng. Chem. Res. 55(36), 9557 (2016)

    Article  Google Scholar 

  4. H.M. Chen, R.-S. Liu, J. Phys. Chem. C 115, 3513 (2011)

    Article  Google Scholar 

  5. E. Kirubha, P.K. Palanisamy, Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 045006 (2014)

    Article  Google Scholar 

  6. A. Sakthisabarimoorthi, M. Jose, S.A. Martin Britto Dhas, S. Jerome Das, J. Mater. Sci. Mater. Electron. 28, 4545 (2016)

    Article  Google Scholar 

  7. A. Sakthisabarimoorthi, S.A. Martin Britto Dhas, M. Jose, Mater. Sci. Semicond. Process. 71, 69 (2017)

    Article  Google Scholar 

  8. R. Ghosh Chaudhuri, S. Paria, Chem. Rev. 112, 2373 (2012)

    Article  Google Scholar 

  9. M. Karimipour, M. Ebrahimi, Z. Abafat, M. Molaei, Opt. Mater. 57, 257 (2016)

    Article  Google Scholar 

  10. X. Fu, Z. Wu, M. Lei, L. Zhang, H. Chen, W. Tang, Z. Peng, Mater. Lett. 104, 76 (2013)

    Article  Google Scholar 

  11. D. Tang, R. Yuan, Y. Chai, Biotechnol. Bioeng. 94, 996 (2006)

    Article  Google Scholar 

  12. D.M. Mott, D.T.N. Anh, P. Singh, C. Shankar, S. Maenosono, Adv. Colloid Interface Sci. 185–186, 14 (2012)

    Article  Google Scholar 

  13. Y. Cui, B. Ren, J.-L. Yao, R.-A. Gu, Z.-Q. Tian, J. Phys. Chem. B 110, 4002 (2006)

    Article  Google Scholar 

  14. Y. Li, Q. Wang, X. Zhou, C.-y. Wen, J. Yu, X. Han, Z.-f. Yan, J. Zeng, Sens. Actuators B 228, 366 (2016)

    Article  Google Scholar 

  15. T. Ghodselahi, S. Arsalani, T. Neishaboorynejad, Appl. Surf. Sci. 301, 230 (2014)

    Article  Google Scholar 

  16. D.A. Ferrer, L.A. Diaz-Torres, S. Wu, M. Jose-Yacaman, Catal. Today 147, 211 (2009)

    Article  Google Scholar 

  17. Y. Sun, B. Mayers, Y. Xia, Nano Lett. 2, 481 (2002)

    Article  Google Scholar 

  18. J. Yang, J.Y. Lee, H.-P. Too, J. Phys. Chem. B 109, 19208 (2005)

    Article  Google Scholar 

  19. Y. Wu, P. Jiang, M. Jiang, T.-W. Wang, C.-F. Guo, S.-S. Xie, Z.-L. Wang, Nanotechnology 20, 305602 (2009)

    Article  Google Scholar 

  20. M. Jose, M. Sakthivel, Mater. Lett. 117, 78 (2014)

    Article  Google Scholar 

  21. M. Jose, R. Thanal, J. Prince Joshua, S.A. Martin Britto Dhas, S. Jerome Dhas, Superlatt. Microstruct. 89, 68 (2016)

    Article  Google Scholar 

  22. E. Xenogiannopoulou, K. Iliopoulos, S. Couris, T. Karakouz, A. Vaskevich, I. Rubinstein, Adv. Funct. Mater. 18, 1281 (2008)

    Article  Google Scholar 

  23. R. Philip, P. Chantharasupawong, H. Qian, R. Jin, J. Thomas, Nano Lett. 12, 4661 (2012)

    Article  Google Scholar 

  24. F. Naseri, D. Dorranian, Opt. Quantum Electron. 49, 4 (2017)

    Article  Google Scholar 

  25. M. Bass, E.W. Van Stryland, D.R. Williams, W.L. Wolfe, Handbook of Optics, 2nd edn. (McGraw-Hill, Inc., USA, 1995)

    Google Scholar 

  26. D. Dorranian, Y. Golian, A. Hojabri, J. Theor. Appl. Phys. 6, 1 (2012)

    Article  Google Scholar 

  27. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, J. Alloys Compd. 448, 21 (2008)

    Article  Google Scholar 

  28. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  Google Scholar 

  29. N.R. Dhineshbabu, V. Rajendran, N. Nithyavathy, R. Vetumperumal, Appl. Nanosci. 6, 933 (2016)

    Article  Google Scholar 

  30. L. Polavarapu, N. Venkatram, W. Ji, Q.-H. Xu, ACS Appl. Mater. Interfaces 1(10), 2298 (2009)

    Article  Google Scholar 

  31. A. Sakthisabarimoorthi, S.A. Martin Britto Dhas, M. Jose, Mater. Chem. Phys. 212, 224 (2018)

    Article  Google Scholar 

  32. M.S. Neo, N. Venkatram, G.S. Li, W.S. Chin, W. Ji, J. Phys. Chem. C 114, 18037 (2010)

    Article  Google Scholar 

  33. Y.H. Lee, Y. Yan, L. Polavarapu, Q.-H. Xu, Appl. Phys. Lett. 95, 023105 (2009)

    Article  Google Scholar 

  34. M. Sheik-Bahae, A.A. Said, T.-h. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26(4), 760 (1990)

    Article  Google Scholar 

  35. M.H. Majles Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, F. Divsar, J. Quant. Spectrosc. Radiat. Transf. 113, 366 (2012)

    Article  Google Scholar 

  36. M.H. Majles Ara, Z. Javadi, R.S. Sirohi, Optik 122, 1961 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The author (Dr. M. Jose) thank the Department of Atomic Energy-Board of Research in Nuclear Sciences (DAE-BRNS), Government of India (Sanction No: 34/14/54/2014- BRNS) for providing Impedance spectroscopy analysis facility in the Department of Physics, Sacred Heart College (Autonomous), Tirupattur, India. The authors also gratefully acknowledge Prof. D. Sastikumar, Department of Physics, National Institute of Technology, Trichy for providing the z-scan facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthisabarimoorthi, A., Martin Britto Dhas, S.A. & Jose, M. Preparation of composite Ag@Au core–shell nanoparticles and their linear and nonlinear optical properties. J Mater Sci: Mater Electron 30, 1677–1685 (2019). https://doi.org/10.1007/s10854-018-0439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0439-5

Navigation