Skip to main content
Log in

Impact of Ce content on cubic phase cerium–cadmium oxide (Ce–CdO) nanoparticles and its n-CeCdO/p-Si junction diodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microwave irradiation method was adopted to synthesize Ce doped CdO nanoparticles. The n-CeCdO/p-Si junction diode was fabricated and it’s parameters have been studied at different doping concentrations (0, 5, 10, and 15 wt%) of Ce. The Ce doping effect was analyzed by various characterization techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photo electron spectroscopy (XPS), ultra violet–visible spectroscopy (UV–Vis) and DC conductivity (I–V) studies. From XRD analysis, the Ce–CdO nanoparticles depicted a crystalline nature and showed the cubic phase. The crystallite size of the samples varied from 18.72 to 14.68 nm. TEM images reveal that the Ce–CdO nanoparticles have nail-like structure. The presence of the elements Ce, Cd and O were confirmed by EDX and XPS studies. The optical bandgap value decreases with the increasing doping concentration and the minimum band gap energy of 2.70 eV is obtained for 15 wt% Ce–CdO sample. I–V curve represents the semiconducting behavior of Ce–CdO nanoparticles. Variation of current in Ce doped CdO nanoparticles exhibits linear response to applied voltage. The diode behavior was studied under darkness and illumination environment. The major diode parameters, ideality factor and barrier height of n-CeCdO/p-Si junction diode were examined using J–V method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Z.K. Zhang, M.L. Bai, D.Z. Guo, S.M. Huo, G.M. Zhang, Chem. Commun. 8439, 47–51 (2011)

    Google Scholar 

  2. S.J. Chen, G.R. Wang, Y.C. Liu, J. Lumin. 129, 340–343 (2009)

    Article  CAS  Google Scholar 

  3. T.V. Torchynska, B. El Filali, J. Lumin. 149, 54–60 (2014)

    Article  CAS  Google Scholar 

  4. E.-H. Kong, S.-H. Joo, H.-J. Park, S. Song, Y.-J. Chang, H.S. Kim, H.M. Jang, Small 10, 3678–3684 (2014)

    Article  CAS  Google Scholar 

  5. S.K. Apte, S.N. Garaje, G.P. Mane, A. Vinu, S.D. Naik, D.P. Amalnerkar, B.B. Kale, Small 7, 957–964 (2011)

    Article  CAS  Google Scholar 

  6. C.N.R. Rao, A. Govindaraj, Nanotubes and Nanowires: Edition 2 (RSC Publishing, Cambridge, 2005)

    Google Scholar 

  7. C.N.R. Rao, A. Müller, A.K. Cheetham, Nanomaterials Chemistry: Recent Development and New Directions (Wiley‐VCH Verlag GmbH & Co. KGaA, 2007)

  8. D.D.D. Ma, S.T. Lee, Nano Lett. 6, 926–929 (2006)

    Article  CAS  Google Scholar 

  9. T. Zhai, X. Fang, Y. Bando, Q. Liao, X. Xu, H. Zeng, Y. Ma, J. Yao, D. Golberg, ACS Nano 3, 949–959 (2009)

    Article  CAS  Google Scholar 

  10. T. Zhai, X. Fang, Y. Bando, B. Dierre, B. Liu, H. Zeng, X. Xu, Y. Huang, X. Yuan, T. Sekiguchi, D. Golberg, Adv. Funct. Mater. 19, 2423–2430 (2009)

    Article  CAS  Google Scholar 

  11. B.J. Lokhande, M.D. Uplane, Mater. Res. Bull. 36, 439–447 (2001)

    Article  CAS  Google Scholar 

  12. J. Santos-Cruz, G. Torres-Delgado, R. Castanedo-Perez, S. Jimenez-Sandoval, J. Marquez-Marin, O. Zelaya-Angel, Sol. Energy 80, 142–147 (2006)

    Article  CAS  Google Scholar 

  13. D.S. Raj, T. Krishnakumar, R. Jayaprakash, T. Prakash, G. Leonardi, G. Neri, Sens. Actuators B 171, 853–859 (2012)

    Google Scholar 

  14. H. Colak, O. Turkoglu, Mater. Sci. Semicond. Process. 16, 712–713 (2013)

    Article  CAS  Google Scholar 

  15. K. Okamoto, T. Yoshimi, S. Miura, Appl. Phys. Lett. 53, 678 (1988)

    Article  CAS  Google Scholar 

  16. M.K. Jayaraj, C.P.G. Vallabhan, J. Electrochem. Soc. 138, 1512–1516 (1991)

    Article  CAS  Google Scholar 

  17. J. Liqiang, S. Xiaojun, X. Baifu, W. Baiqi, C. Weimin, F. Honggang, Mater. Sci. Technol. 12, 148–152 (2004)

    Google Scholar 

  18. G. Guo, D. Li, Z. Wang, H. Guo, J. Rare Earths 23, 362 (2005)

    Google Scholar 

  19. A. Alemi, S. Khademinia, S.W. Joo, M. Dolatyari, A. Bakhtiari, H. Moradi, 2nd Asian symposium on electromagnetics and photonics engineering, Tabriz, 28–30 August 2013

  20. S. Sonmezoglu, T.A. Termeli, S. Akın, I. Askeroglu, J. Sol-Gel. Sci. Technol. 67, 97–104 (2013)

    Article  CAS  Google Scholar 

  21. A.T. Ravichandran, A. Robert Xavier, K. Pushpanathan, B.M. Nagabhushana, R. Chandramohan, J. Mater. Sci.: Mater. Electron. 27, 2693–2700 (2016)

    CAS  Google Scholar 

  22. B. Sahin, T. Taşkopru, F. Bayansal, Ceram. Int. 40, 8709–8714 (2014)

    Article  CAS  Google Scholar 

  23. S.J. Helen, S. Devadason, T. Mahalingam, J. Mater. Sci.: Mater. Electron. 27, 4426–4432 (2016)

    CAS  Google Scholar 

  24. M. Thambidurai, N. Muthukumarasamy, A. Ranjitha, D. Velauthapillai, Superlattices Microstruct. 86, 559–563 (2015)

    Article  CAS  Google Scholar 

  25. A.A. Dakhel, J. Mater. Sci. 46, 1455–1461 (2011)

    Article  CAS  Google Scholar 

  26. A. Robert Xavier, A.T. Ravichandran, K. Ravichandran, S. Mantha, D. Ravinder, J. Mater. Sci.: Mater. Electron. 27, 11182–11187 (2016)

    Google Scholar 

  27. K. Mohanraj, D. Balasubramanian, J. Chandrasekaran, A. Chandra Bose, Mater. Sci. Semicond. Process. 79, 74–91 (2018)

    Article  CAS  Google Scholar 

  28. A.M. El sayed, A. Ibrahim, Mater. Sci. Semicond. Process. 26, 320–328 (2014)

    Article  CAS  Google Scholar 

  29. M. Balaji, J. Chandrasekaran, M. Raja, Mater. Sci. Semicond. Process. 43, 104–113 (2016)

    Article  CAS  Google Scholar 

  30. K. Mohanraj, D. Balasubramanian, J. Chandrasekaran, B. Babu, J. Mater. Sci.: Mater. Electron. 28, 7749–7759 (2017)

    CAS  Google Scholar 

  31. R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar, C. Sankar, Mater. Sci. Semicond. Process. 16, 825–832 (2013)

    Article  CAS  Google Scholar 

  32. G. Murugadoss, R. Thangamuthu, R. Jayavel, M. Rajesh Kumar, J. Lumin. 165, 30–39 (2015)

    Article  CAS  Google Scholar 

  33. S.H. Mohamed, N.M.A. Hadia, A.K. Diab, A.M. Abdel Hakeem, J. Alloys Compd. 609, 68–72 (2014)

    Article  CAS  Google Scholar 

  34. F.T. Thema, P. Beukes, A. Gurib-Fakim, M. Maaza, J. Alloy. Compd. 646, 1043–1048 (2015)

    Article  CAS  Google Scholar 

  35. S. Sivakumar, A. Venkatesan, P. Soundhirarajan, C.P. Khatiwada, Spectrochim. Acta A 136, 1751–1759 (2015)

    Article  CAS  Google Scholar 

  36. P. Kubelka, F. Munk, Z. Tech. Phys. (Leipzig) 12, 593–601 (1931)

    Google Scholar 

  37. H. Wang, Z. Wu, Y. Liu, J. Phys. Chem. C 113, 13317–13324 (2009)

    Article  CAS  Google Scholar 

  38. P. Velusamy, R. Ramesh Babu, K. Ramamurthi, M.S. Dahlem, E. Elangovan, R. Soc. Chem. Adv. 5, 102741–102749 (2015)

    CAS  Google Scholar 

  39. Y.-C. Weng, H. Chang, Int. J. Hydrogen Energy 41, 10670–10679 (2016)

    Article  CAS  Google Scholar 

  40. W. Li, M. Li, S. Xie, T. Zhai, M. Yu, C. Liang, X. Ouyang, X. Lu, H. Li, Y. Tong, Cryst. Eng. Comm. 15, 4212–4216 (2013)

    Article  CAS  Google Scholar 

  41. J. Yang, M. Gao, L. Yang, Y. Zhang, J. Lang, D. Wang, Appl. Surf. Sci. 255, 2646–2650 (2008)

    Article  CAS  Google Scholar 

  42. Y. Liang, N. Guo, L. Li, R. Li, G. Ji, S. Gan, RSC Adv. 5, 59887–59894 (2015)

    Article  CAS  Google Scholar 

  43. R. Maity, K.K. Chattopadhyay, Solar Energy Mater. Solar Cells 90, 597–606 (2006)

    Article  CAS  Google Scholar 

  44. S.N. Das, A.K. Pal, Vacuum 81, 843–850 (2007)

    Article  CAS  Google Scholar 

  45. B. Tatar, D. Demiroglu, M. Ürgen, Microelectron. Eng. 126, 184–190 (2014)

    Article  CAS  Google Scholar 

  46. R.J. Zhu, X.A. Zhang, J.W. Zhao, R.P. Li, W.F. Zhang, J. Alloys Compd. 631, 125–128 (2015)

    Article  CAS  Google Scholar 

  47. J. Kim, J. Yi, W.A. Anderson, Thin Solid Films 518, 6510–6513 (2010)

    Article  CAS  Google Scholar 

  48. I. Pradeep, E. Ranjith Kumar, N. Suriyanarayananc, C. Srinivas, M.V.K. Mehar, Ceram. Int. 44, 7098–7109 (2018)

    Article  CAS  Google Scholar 

  49. I. Pradeep, E. Ranjith Kumar, N. Suriyanaranan, C. Srinivas, N. Venkata Rao. J. Mater. Sci.: Mater. Electron. 29, 9840–9853 (2018)

    CAS  Google Scholar 

  50. R. Suresh, V. Ponnuswamy, C. Sankar, M. Manickam, R. Mariappan, RSC Adv. 6, 53967–53980 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Balasubramanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanraj, K., Balasubramanian, D., Porkumaran, K. et al. Impact of Ce content on cubic phase cerium–cadmium oxide (Ce–CdO) nanoparticles and its n-CeCdO/p-Si junction diodes. J Mater Sci: Mater Electron 29, 20439–20454 (2018). https://doi.org/10.1007/s10854-018-0178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0178-7

Navigation