Skip to main content
Log in

Impact of multiple phases on ferroelectric and piezoelectric performances of BNKT–BZT ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free (1−x)Bi0.5(Na0.8K0.2)0.5TiO3–xBaZr0.1Ti0.9O3 (with x = 0.0, 0.02, 0.025, 0.030, 0.035, 0.040) were prepared by conventional solid state reaction method. The effect of different amount of barium zirconate titanate (BZT) on structural, microstructural, ferroelectric and piezoelectric properties was examined experimentally through X-ray diffraction, scanning electron microscope and field-induced polarization and strain measurement. The coexistence of rhombohedral/tetragonal phase has been observed in pure BNKT. Now, with the addition of BZT contents in pure BNKT, the tetragonal phase has been observed to be dominant over rhombohedral, but still, mixed phase coexists in entire composition range. The temperature dependent dielectric constant and room temperature ferroelectric hysteresis show a strong dependence on their crystallographic phases. Piezoelectric properties reveal that the BNKT–0.025BZT ceramic has a large unipolar strain of 0.21% (Smax/Emax = 430 pm/V) at room temperature under an external field of 5 kV/mm. Addition of BZT reduces the remnant polarization and hysteresis loss, suggesting ferroelectric ceramics for future energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera, H. Mao, R.J. Hemley, Y. Ren, P. Liermann, Z. Wu, Origin of morphotropic phase boundaries in ferroelectrics. Nat. Lett. 451, 1–5 (2008)

    Article  Google Scholar 

  2. W.C. Lee, Y.F. Lee, M.H. Tseng, C.Y. Huang, Y.C. Wu, Crystal structure and ferroelectric properties of (Bi0.5Na0.5)TiO3–Ba(Zr0.05Ti0.95)O3 piezoelectric ceramics. J. Am. Ceram. Soc. 1, 1–5 (2009)

    Google Scholar 

  3. B. Parija, T. Badapanda, S.K. Rout, L.S. Cavalcante, S. Panigrahi, E. Longo, Morphotropic phase boundary and electrical properties of 1−x[Bi0.5Na0.5]TiO3–xBa[Zr0.25Ti0.75]O3 lead-free piezoelectric ceramics. Ceram. Int. 39, 4877–4886 (2013)

    Article  CAS  Google Scholar 

  4. V. Pal, O.P. Thakur, R.K. Dwivedi, J. Phys. D 055301, 55301 (2009)

    Google Scholar 

  5. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nat. Lett. 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  6. R. Garg, B.N. Rao, A. Senyshyn, P.S.R. Krishna, R. Ranjan, Lead-free piezoelectric system (Na0.5Bi0.5)TiO3-BaTiO3: equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact. Phys. Rev. B 88, 014103 (2013)

    Article  Google Scholar 

  7. B.N. Rao, R. Ranjan, Electric-field-driven monoclinic-to-rhombohedral transformation in Na1/2Bi1/2TiO3. Phys. Rev. B 134103, 3–6 (2012)

    Google Scholar 

  8. H. Lidjici, B. Lagoun, M. Berrahal, M. Rguitti, M.A. Hentatti, H. Khemakhem, XRD, Raman and electrical studies on the (1−x)(Na0.5Bi0.5)TiO3–xBaTiO3 lead free ceramics. J. Adv. Dielectr. 618, 643–648 (2015)

    CAS  Google Scholar 

  9. I. Coondoo, N. Panwar, A. Kholkin, Lead-free piezoelectrics: current status and perspectives. J. Adv. Dielectr. 3, 1–22 (2013)

    Article  Google Scholar 

  10. J. Suchanicz, J. Kusz, H. Bo, H. Duda, J.P. Mercurio, K. Konieczny, Structural and dielectric properties of (Na0.5Bi0.5)0.70Ba0.30TiO3 ceramics. J. Eur. Ceram. Soc. 23, 1559–1564 (2003)

    Article  CAS  Google Scholar 

  11. E.M. Anton, W. Jo, J. Trodahl, D. Damjanovic, J. Rodel, Effect of K0.5Na0.5NbO3 on properties at and off the morphotropic phase boundary in Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 ceramics. Jpn. J. Appl. Phys. 50, 055802–055810 (2011)

    Article  Google Scholar 

  12. H. Nagata, T. Takenaka, (Bi1/2Na1/2)TiO3-based non-lead piezoclectric ceramics. J. Korean Phys. Soc. 32, 1298–1300 (1998)

    Google Scholar 

  13. T. Takenaka, H. Nagata, Y. Hiruma, Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3- and (Bi1/2K1/2)TiO3-based Bismuth perovskite lead-free ferroelectric ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1595–1612 (2009)

    Article  Google Scholar 

  14. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  15. D. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, Structrual and electrical properties of K0.5Na0.5NbO3-LiSbO3 lead-free piezoelectric ceramics. J. Appl. Phys. 102, 074111 (2007)

    Article  Google Scholar 

  16. A. Ullah, C.W. Ahn, A. Hussain, S.Y. Lee, I.W. Kim, Phase transition, electrical properties, and temperature-insensitive large strain in BiAlO3-modified Bi0.5(Na0.75K0.25)0.5TiO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 94, 3915–3921 (2011)

    Article  CAS  Google Scholar 

  17. A. Hussain, C.W. Ahn, J.S. Lee, A. Ullah, I.W. Kim, Large electric-field-induced strain in Zr-modified lead-free. Sens. Actuators A 158, 84–89 (2010)

    Article  CAS  Google Scholar 

  18. K.N. Pham, A. Hussain, C.W. Ahn, I.W. Kim, S.J. Jeong, J.S. Lee, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater. Lett. 64, 2219–2222 (2010)

    Article  CAS  Google Scholar 

  19. H.S. Han, C.W. Ahn, I.W. Won, A. Hussain, J.S. Lee, Destabilization of ferroelectric order in bismuth perovskite ceramics by A-site vacancies. Mater. Lett. 70, 98–100 (2012)

    Article  CAS  Google Scholar 

  20. A. Ullah, C.W. Ahn, A. Hussain, S.Y. Lee, J.S. Kim, I.W. Kim, Effect of potassium concentration on the structure and electrical properties of lead-free Bi0.5 (Na,K)0.5 TiO3–BiAlO3 piezoelectric ceramics. J. Alloys Compd. 509, 3148–3154 (2011)

    Article  CAS  Google Scholar 

  21. V.Q. Nguyen, H.S. Han, K.J. Kim, D.D. Dang, K.K. Ahn, J.S. Lee, Strain enhancement in Bi1/2(Na0.82K0.18)1/2TiO3 lead-free electromechanical ceramics by co-doping with Li and Ta. J. Alloys Compd. 511, 237–241 (2012)

    Article  CAS  Google Scholar 

  22. Y. Saito, H. Takao, High performance lead-free piezoelectric ceramics in the (K,Na) NbO3-LiTaO3 solid solution system. Ferroelectrics 338, 37–41 (2006)

    Article  Google Scholar 

  23. X. Yi, H. Chen, W. Cao, M. Zhao, D. Yang, G. Ma, C. Yang, J. Han, Flux growth and characterization of lead-free piezoelectric single crystal Bi0.5(Na(1–x)Kx)0.5TiO3. J. Cryst. Growth 281, 364–369 (2005)

    Article  CAS  Google Scholar 

  24. N.D. Quan, L.H. Bac, D.V. Thiet, V.N. Hung, D.D. Dung, Current development in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric materials. Adv. Mater. Sci. Eng. 13, 1–14 (2014)

    Article  Google Scholar 

  25. A.K. Kalyani, K. Brajesh, A. Senyshyn, R. Ranjan, Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO3. J. Appl. Phys. Lett. 104, 252906 (2014)

    Article  Google Scholar 

  26. A.K. Kalyani, R. Ranjan, Anomalous piezoelectric response due to stabilization of two ferroelectric phases in Zr-modified BaTiO3. J. Phys.: Condens. Matter. 25, 362203–362205 (2013)

    Google Scholar 

  27. K. Brajesh, A.K. Kalyani, R. Ranjan, Ferroelectric instabilities and enhanced piezoelectric response in Ce modified BaTiO3 lead-free ceramics. Appl. Phys. Lett. 106, 012907 (2015)

    Article  Google Scholar 

  28. Y. Xu, Perovskite-type ferroelectrics: part I, in Ferroelectric Materials and Their Applications (Elsevier, Amsterdam, 1991), pp. 101–162

    Chapter  Google Scholar 

  29. K.M. Rabe, C.H. Ahn, J.M. Triscone, in Physics of Ferroelectrics: A Modern Perspective. vol. 105, ed. by CE Ascheron (Springer, Heidelberg, 2007)

    Google Scholar 

  30. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993)

    Article  CAS  Google Scholar 

  31. W. Bai, L. Li, W. Li, B. Shen, J. Zhai, H. Chen, Phase diagrams and electromechanical strains in lead-free BNT-based ternary perovskite compounds. J. Am. Ceram. Soc. 97, 3510–3518 (2014)

    Article  CAS  Google Scholar 

  32. W.C. Lee, C.Y. Huang, L.K. Tsao, Y.C. Wu, Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5 Na0.5) TiO3-based piezoelectric ceramics. J. Eur. Ceram. Soc. 29, 1443–1448 (2009)

    Article  CAS  Google Scholar 

  33. S.K. Ghosh, V. Chauhan, A. Hussain, S.K. Rout, Phase transition and energy storage properties of BaTiO3-modified Bi0.5(Na0.8K0.2)0.5TiO3 ceramics. Ferroelectrics 517, 97–103 (2017)

    Article  CAS  Google Scholar 

  34. Y. Negishi, T. Kimura, Problems in the preparation of textured lead-free piezoelectric ceramics by reactive- and hetero-templated grain growth methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 978, 1–4 (2012)

    Google Scholar 

  35. T. Kimura, Y. Yuan, F. Sakurai, Mechanisms of texture development in lead-free piezoelectric ceramics with perovskite structure made by the templated grain growth process. Materials 3, 4965–4978 (2010)

    Article  CAS  Google Scholar 

  36. V. Chauhan, S.K. Ghosh, A. Hussain, S.K. Rout, In fluence of niobium substitution on structural and opto-electrical properties of BNKT piezoelectric ceramics. J. Alloys Compd. 674, 413–424 (2016)

    Article  CAS  Google Scholar 

  37. X.P. Jiang, L.Z. Li, M. Zeng, H.L.W. Chan, Dielectric properties of Mn-doped (Na0.8K0.2)0.5Bi0.5TiO3 ceramics. Mater. Lett. 60, 1786–1790 (2006)

    Article  CAS  Google Scholar 

  38. J. Camargo, L. Ramajol, F. Rubio-Marcos, M. Castro, Ferroelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 ceramics. Adv. Mater. Res. 975, 3–8 (2014)

    Article  Google Scholar 

  39. P. Jaita, A. Watcharapasorn, N. Kumar, S. Jiansirisomboon, D.P. Cann, Lead-free (Ba0.70Sr0.30)TiO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 ceramics with large electric field–induced strains. J. Am. Ceram. Soc. 99, 1615–1624 (2016)

    Article  CAS  Google Scholar 

  40. T.M. Correia, M. Mcmillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, A lead-free and high-energy density ceramic for energy storage applications. J. Am. Ceram. Soc. 2702, 2699–2702 (2013)

    Article  Google Scholar 

  41. S.K. Ghosh, S. Saha, T.P. Sinha, S.K. Rout, Large electrostrictive effect in (Ba1–xGd2x/3)Zr0.3Ti0.7O3 relaxor towards moderate field actuator and energy storage applications. J. Appl. Phys. 120, 204101 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

All authors gratefully acknowledge the financial support from BRNS, Government of India, through Project File No. 34/14/11/2016-BRNS/34037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Rout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, S.K., Chauhan, V., Kushvaha, D.K. et al. Impact of multiple phases on ferroelectric and piezoelectric performances of BNKT–BZT ceramic. J Mater Sci: Mater Electron 29, 19524–19531 (2018). https://doi.org/10.1007/s10854-018-0083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0083-0

Navigation