Skip to main content
Log in

Influence of Nd doping on microwave dielectric properties of SrTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sr1−x Nd x TiO3 (x = 0.08–0.14) ceramics were prepared by conventional solid-state methods. The analysis of crystal structure suggested Sr1−x Nd x TiO3 ceramics appeared to form tetragonal perovskite structure. The relationship between charge compensation mechanism, microstructure feature and microwave dielectric properties were investigated. Trivalent Nd3+ substituting Sr2+ could effectively decrease oxygen vacancies. This reduction and relative density were critical to improve Q × f values of Sr1−x Nd x TiO3 ceramics. For ε r values, incorporation of Nd could restrain the rattling of Ti4+ cations and led to the reduction of dielectric constant. The τ f values were strongly influenced by tilting of oxygen octahedral. The τ f values decreased from 883 to 650 ppm/°C with x increasing from 0.08 to 0.14. A better microwave dielectric property was achieved for composition Sr0.92Nd0.08TiO3 at 1460 °C: ε r  = 160, Q × f = 6602 GHz, τ f  = 883 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.T. Sebastian, Dielectric Materials for Wireless Communication. (Elsevier, Oxford, 2008)

    Google Scholar 

  2. C.L. Huang, C.F. Tseng, W.R. Yang, T.J. Yang, J. Am. Ceram. Soc. 91(7), 2201–2204 (2008)

    Article  Google Scholar 

  3. Y.Y. Li, X.C. Lu, Y. Zhang et al., Ceram. Int. 43(14), 11516–11522 (2017)

    Article  Google Scholar 

  4. Y. Okamoto, Y. Suzuki, J. Ceram. Soc. Jpn. 122(1428), 728–731 (2014)

    Article  Google Scholar 

  5. W. Wang, L. Tang, W. Bai, B. Shen, J. Zhai, J. Mater. Sci.: Mater. Electron. 25(8), 3601–3607 (2014)

    Google Scholar 

  6. Z.Y. Shen, Q.G. Hu, Y.M. Li et al., J. Mater. Sci.: Mater. Electron. 24(8), 3089–3094 (2013)

    Google Scholar 

  7. F. Liu, C. Yuan, X. Liu, G. Chen, C. Zhou, J. Qu, Mater. Chem. Phys. 148(3), 1083–1088 (2014)

    Article  Google Scholar 

  8. Z. Wang, M. Cao, Z. Yao et al., Ceram. Int. 40(1), 929–933 (2014)

    Article  Google Scholar 

  9. A. Tkach, P.M. Vilarinho, A.L. Kholkin, Acta. Mater. 54(20), 5385–5391 (2006)

    Article  Google Scholar 

  10. A. Tkach, T.M. Correia, A. Almeida et al., Acta. Mater. 59(14), 5388–5397 (2011)

    Article  Google Scholar 

  11. C.C. Wang, C.M. Lei, G.J. Wang et al., J. Appl. Phys. 113(9), 392 (2013)

    Article  Google Scholar 

  12. R.C. Pullar, S.J. Penn, X. Wang, I.M. Reaney, N.M. Alford, J. Eur. Ceram. Soc. 29(3), 419–424 (2009)

    Article  Google Scholar 

  13. A. Chen, Y. Zhi, J. Appl. Phys. 71(12), 6025–6028 (1992)

    Article  Google Scholar 

  14. L. Liu, Y. Wang, Y. Bai et al., Mater. Trans. 37(2), 142–149 (1996)

    Article  Google Scholar 

  15. W.Q. Luo, Z.Y. Shen, Y.M. Li, Z.M. Wang, R.H. Liao, X.Y. Gu, J. Electroceram. 31(1–2), 117–123 (2013)

    Article  Google Scholar 

  16. C. Ang, Z. Yu, Appl. Phys. Lett. 88(16), 474 (2006)

    Article  Google Scholar 

  17. Y. Zhi, A. Chen, J. Mater. Sci. 38(1), 113–118 (2003)

    Article  Google Scholar 

  18. A. Durán, E. Martínez, J.A. Díaz, J.M. Siqueiros, J. Appl. Phys. 97(10), 677 (2005)

    Article  Google Scholar 

  19. B. Ullah, W. Lei, X.Q. Song et al., J. Alloys Compd. 728, 623–630 (2017)

    Article  Google Scholar 

  20. L. Wang, Y. Sakka, S. Yang, G.A. Botton, T. Kolodiazhnyi, J. Am. Ceram. Soc. 93(9), 2903–2908 (2010)

    Article  Google Scholar 

  21. E.L. Colla, I.M. Reaney, N. Setter, J. Appl. Phys. 74(5), 3414–3425 (1993)

    Article  Google Scholar 

  22. M.S. Fu, X.Q. Liu, X.M. Chen, J. Eur. Ceram. Soc. 28(3), 585–590 (2008)

    Article  Google Scholar 

  23. Z.Y. Shen, Y.M. Li, W.Q. Luo, Z.M. Wang, X.Y. Gu, R.H. Liao, J. Mater. Sci. Mater. Electron. 24(2), 704–710 (2013)

    Article  Google Scholar 

  24. E.R. Kipkoech, F. Azough, R. Freer, J. Appl. Phys. 97(6), 715 (2005)

    Article  Google Scholar 

  25. I.M. Reaney, P. Wise, R. Ubic et al., Philos. Mag. 81(2), 501–510 (2001)

    Article  Google Scholar 

  26. I.M. Reaney, E.L. Colla, N. Setter, Jpn. J. Appl. Phys. 33(7A), 3984–3990 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Opening Project of the State Key Laboratory of High-Performance Ceramics and Superfine Microstructure (Project No. SKL201309SIC), the College Industrialization Project of Jiangsu Province (JHB2012-12), the Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, the Science and Technology Projects of Guangdong Province (Project No. 2011A091103002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qitu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, W., Lu, X., Li, Y. et al. Influence of Nd doping on microwave dielectric properties of SrTiO3 ceramics. J Mater Sci: Mater Electron 29, 2743–2747 (2018). https://doi.org/10.1007/s10854-017-8201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8201-y

Navigation