Skip to main content
Log in

Very low loss tangent, high dielectric and non-ohmic properties of Ca1−1.5xPrxCu3Ti4O12 ceramics prepared by the sol–gel process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Ca1−1.5xPrxCu3Ti4O12 (0.00, 0.02, 0.04 and 0.06) ceramics were prepared by the sol–gel process. Very low loss tangent (tanδ) ∼0.016–0.022 and high dielectric constant (ε ) ∼6174–8469 with temperature coefficients less than ±15% over the temperature range of −75 to 135 °C were observed in all Pr3+-doped CaCu3Ti4O12 ceramics. ε decreased with increasing Pr3+ ion due to the decrease of oxygen vacancies and grain size, resulting from the substitution of small ionic radius Pr3+ ion in the structure. X-ray absorption near edge spectroscopy (XANES) confirmed the decrease of Ti3+/Ti4+ and Cu+/Cu2+ ratios with increasing Pr3+ ions. In addition, all Ca1−1.5xPrxCu3Ti4O12 ceramics displayed non-linear characteristics. Non-linear coefficient (α) and breakdown field (E b) of all ceramic samples can be enhanced by Pr3+ doping with the highest α value of ~14.74 and E b of ~5640 V/cm−1 in sample with x = 0.02. Effect of Pr3+ doping on phase composition and microstructure of samples were studied using X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-rays spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    CAS  Google Scholar 

  2. L. Yang, G. Huang, T. Wang, H. Hao, Y. Tian, Ceram. Int. 42, 9935–9939 (2016)

    CAS  Google Scholar 

  3. J. Deng, L. Liu, X. Sun, S. Liu, T. Yan, L. Fang, B. Elouadi, Mater. Res. Bull. 88, 320–329 (2017)

    CAS  Google Scholar 

  4. B. Xu, J. Zhang, Z. Tian, S.L. Yuan, Mater. Lett. 75, 87–90 (2012)

    CAS  Google Scholar 

  5. J. Jumpatam, A. Mooltang, B. Putasaeng, P. Kidkhunthod, N. Chanlek, P. Thongbai, S. Maensiri, Ceram. Int. 42, 16287–16295 (2016)

    CAS  Google Scholar 

  6. Z. Liu, G. Jiao, X. Chao, Z. Yang, Mater. Res. Bull. 48, 4877–4883 (2013)

    CAS  Google Scholar 

  7. G. Liu, H. Fan, J. Xu, Z. Liu, Y. Zhao, RSC Adv. 6, 48708–48714 (2016)

    CAS  Google Scholar 

  8. W. Tuichai, S. Danwittayakul, N. Chanlek, P. Thongbai, J. Alloys Compd. 725, 310–317 (2017)

    CAS  Google Scholar 

  9. X. Liu, H. Fan, J. Shi, Q. Li, Sci. Rep. 5, 12699 (2015)

    CAS  Google Scholar 

  10. Z. Liu, H. Fan, S. Lei, X. Ren, C. Long, J. Eur. Ceram. Soc. 37, 115–122 (2017)

    Google Scholar 

  11. J. Shi, H. Fan, X. Liu, Y. Ma, Q. Li, J. Alloys Compd. 627, 463–467 (2015)

    CAS  Google Scholar 

  12. P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl, Eur. Phys. J. Special Topics 180, 61–89 (2009)

    Google Scholar 

  13. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)

    Google Scholar 

  14. S. Jesurani, S. Kanagesan, M. Hashim, I. Ismail, J. Alloys Compd. 551, 456–462 (2013)

    CAS  Google Scholar 

  15. P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 2257–2263 (2012)

    CAS  Google Scholar 

  16. P. Thongbai, J. Jumpatam, T. Yamwong, S. Maensiri, J. Eur. Ceram. Soc. 32, 2423–2430 (2012)

    CAS  Google Scholar 

  17. Y. Qiu, Z.Z. Ma, S.X. Huo, H.N. Duan, Z.M. Tian, S.L. Yuan, L. Chen, J. Mater. Sci. 23, 1587–1591 (2012)

    CAS  Google Scholar 

  18. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153–2155 (2002)

    CAS  Google Scholar 

  19. S.Y. Chung, I.D. Kim, S.J.L. Kang, Nat. Mater. 3, 774–778 (2004)

    CAS  Google Scholar 

  20. T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006)

    Google Scholar 

  21. S. Jin, H. Xia, Y. Zhang, Ceram. Int. 35, 309–313 (2009)

    CAS  Google Scholar 

  22. Y. Li, P. Liang, X. Chao, Z. Yang, Ceram. Int. 39, 7879–7889 (2013)

    CAS  Google Scholar 

  23. P. Liang, X. Chao, F. Wang, Z. Liu, Z. Yang, J. Am. Ceram. Soc. 96, 3883–3890 (2013)

    CAS  Google Scholar 

  24. A.K. Rai, J. Gim, E.C. Shin, H.H. Seo, V. Mathew, K.D. Mandal, O. Parkash, J.S. Lee, J. Kim, Ceram. Int. 40, 181–189 (2014)

    CAS  Google Scholar 

  25. L. Feng, X. Tang, Y. Yan, X. Chen, Z. Jiao, G. Cao, Phys. Status Solidi A 203, R22-R24 (2006)

    Google Scholar 

  26. J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, J. Mater. Sci. 26, 2329–2337 (2015)

    CAS  Google Scholar 

  27. P. Thongbai, J. Boonlakhorn, B. Putasaeng, T. Yamwong, S. Maensiri, J. Am. Ceram. Soc. 96, 379–381 (2013)

    CAS  Google Scholar 

  28. M. Li, Q. Liu, C.X. Li, J. Alloys Compd. 699, 278–282 (2017)

    CAS  Google Scholar 

  29. J. Boonlakhorn, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Alloys Compd. 612, 103–109 (2014)

    CAS  Google Scholar 

  30. R. Kashyap, O.P. Thakur, R.P. Tandon, Ceram. Int. 38, 3029–3037 (2012)

    CAS  Google Scholar 

  31. L.F. Xu, P.B. Qi, X.P. Song, X.J. Luo, C.P. Yang, J. Alloys Compd. 509, 7697–7701 (2011)

    CAS  Google Scholar 

  32. M. Li, G. Cai, D.F. Zhang, W.Y. Wang, W.J. Wang, X.L. Chen, J. Appl. Phys. 104, 074107 (2008)

    Google Scholar 

  33. S. Vangchangyia, E. Swatsitang, P. Thongbai, S. Pinitsoontorn, T. Yamwong, S. Maensiri, V. Amornkitbamrung, P. Chindaprasirt, J. Am. Ceram. Soc. 95, 1497–1500 (2012)

    CAS  Google Scholar 

  34. S. Jesurani, S. Kanagesan, R. Velmurugan, C. Thirupathi, M. Sivakumar, T. Kalaivani, Mater. Lett. 65, 3305–3308 (2011)

    CAS  Google Scholar 

  35. C. Kumar, J. Mater. Sci. 22, 579–582 (2011)

    CAS  Google Scholar 

  36. M. Newville, J. Synchrotron Radiat. 8, 96–100 (2001)

    CAS  Google Scholar 

  37. B. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537–541 (2005)

    CAS  Google Scholar 

  38. E.S. Junior, F.A. La Porta, M.S. Liu, J. Andres, J.A. Varela, E. Longo, Dalton Trans. 44, 3159–3175 (2015)

    Google Scholar 

  39. E. Jansen, W. Schäfer, G. Will, J. Appl. Crystallogr. 27, 492–496 (1994)

    CAS  Google Scholar 

  40. M.N. Rahaman, Ceramic Processing and Sintering, 2nd edn. (Marcel Dekker, New York, 2003), pp. 567–572

    Google Scholar 

  41. J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Appl. Phys. A 120, 89–95 (2015)

    CAS  Google Scholar 

  42. J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, P. Thongbai, Ceram. Int. 43, 2705–2711 (2017)

    CAS  Google Scholar 

  43. S.I.R. Costa, M. Li, J.R. Frade, D.C. Sinclair, RSC Adv. 3, 7030–7036 (2013)

    CAS  Google Scholar 

  44. R. Schmidt, S. Pandey, P. Fiorenza, D.C. Sinclair, RSC Adv. 3, 14580–14589 (2013)

    CAS  Google Scholar 

  45. M. Ahmadipour, M.F. Ain, Z.A. Ahmad, Appl. Surf. Sci. 385, 182–190 (2016)

    CAS  Google Scholar 

  46. L. Ni, X.M. Chen, Appl. Phys. Lett. 91, 122905 (2007)

    Google Scholar 

  47. Q. Zheng, H. Fan, C. Long, J. Alloys Compd. 511, 90–94 (2012)

    CAS  Google Scholar 

  48. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd edn. (Wiley, West Sussex, 2003), p. 310

    Google Scholar 

  49. W. Kobayashi, I. Terasaki, Appl. Phys. Lett. 87, 032902 (2005)

    Google Scholar 

  50. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313 (2012)

    CAS  Google Scholar 

  51. G. Dong, H. Fan, P. Ren, X. Liu, J. Alloys Compd. 615, 916–920 (2014)

    CAS  Google Scholar 

  52. P. Ren, H. Fan, X. Wang, Appl. Phys. Lett. 103, 152905 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Council of Thailand (NRCT) under Rajamangala University of Technology Rattanakosin (Grant. 2561). The Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002, Thailand and Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of Science, Khon Kaen University are also grateful for their co-financial supports. The authors express their appreciation to the National Metal and Materials Technology Center (MTEC), Thailand Science Park, Pathumthani, Thailand for dielectric measurements. The Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand is acknowledged for XANES measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanin Putjuso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swatsitang, E., Putjuso, T. Very low loss tangent, high dielectric and non-ohmic properties of Ca1−1.5xPrxCu3Ti4O12 ceramics prepared by the sol–gel process. J Mater Sci: Mater Electron 28, 18966–18976 (2017). https://doi.org/10.1007/s10854-017-7850-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7850-1

Navigation