Skip to main content
Log in

Yttrium oxide nanostructured thin films deposited by radio frequency sputtering: the annealing optimizations and correlations between structural, morphological, optical and electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, structural, morphological, optical, electrical properties and their correlations of the Yttrium Oxide (Y2O3) thin films were studied in details. The variations in these parameters by annealing of the samples at 500, 700, 900 °C were examined and optimum annealing conditions for the Y2O3 thin films were also determined. The structural parameters were studied by X-ray diffractometer analysis while scanning electron microscopy (SEM) was used for investigating the morphological properties of the devices. The reflection measurements were performed and band gap (Eg) calculations have been done by using the spectroscopic reflectometer measurements. The electrical parameters were examined by specifying surface state density and alternating-current (a.c.) conductivity. The results have revealed that the crystallizations, grain sizes of the thin films were improved with annealing due to agglomeration of the small particles around the bigger cluster thanks to high thermal energy which can also be seen in SEM measurements. On the other hand, both the reflection and the Eg were enhanced with annealing. The films having disorder structure, and higher defects density localised in the energy gap of dielectrics layer caused additionally allowed states. These additionally allowed states may affect the optical characteristics. Hence, it may deflect the optical performance of the films. The surface state densities almost decrease and the a.c. the conductivity of the thin films increases with increasing in annealing temperature due to rise in the grain sizes of the films. The number of the defect centres localised in the intra-crystallites boundary of the grains cause lattice and impurity scattering hence increase the bulk resistivity of layers. Therefore, the films having higher grain sizes decrease the number of the grain boundary; hence, increase the a.c. the conductivity of devices. Considering these results, strong relations were observed among structural, morphological, optical and electrical characteristics of the thin films and the devices which were annealed at 900 °C exhibited demanding characteristics for microelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I.S. Park, T. Lee, H. Ko, J. Ahn, J. Korean Phys. Soc. 49, 760–763 (2006)

    Google Scholar 

  2. A.M. Mahajan, A.G. Khairnar, B.J. Thibeault, Semiconductors 48 497–500 (2014)

    Article  Google Scholar 

  3. S. Kaya, E. Yilmaz, A. Kahraman, H. Karacali, Nucl. Instrum. Methods B 358 188–193 (2015)

    Article  Google Scholar 

  4. J. Zhu, Z.G. Liu, Appl. Phys. A 78, 741–744 (2004)

    Article  Google Scholar 

  5. R. Paily, A. DasGupta, N. DasGupta, P. Bhattacharya, P. Misra, T. Ganguli, L.M. Kukreja, A.K. Balamurugan, S. Rajagopalan, A.K. Tyagi, Appl. Surf. Sci. 187, 297–304 (2002)

    Article  Google Scholar 

  6. A. Boukerika, L. Guerbous, J. Lumin. 145, 148–153 (2014)

    Article  Google Scholar 

  7. V.H. Mudavakkat, V.V. Atuchin, V.N. Kruchinin, A. Kayani, C.V. Ramana, Opt. Mater. 34, 893–900 (2012)

    Article  Google Scholar 

  8. A. Dimoulas, G. Vellianitis, A. Travlos, V. Ioannou-Sougleridis, A.G. Nassiopoulou, J. Appl. Phys. 92, 426–431 (2002)

    Article  Google Scholar 

  9. S.J. Pearce, G.J. Parker, M.D.B. Charlton, J.S. Wilkinson, J. Vac. Sci. Technol. A 28 1388 (2010)

    Article  Google Scholar 

  10. S.K. Sharma, S. Mohan, Appl. Surf. Sci. 282, 492–498 (2013)

    Article  Google Scholar 

  11. T.M. Pan, C.C. Huang, Appl. Surf. Sci. 256, 7186–7193 (2010)

    Article  Google Scholar 

  12. S. Kaya, E. Yilmaz, A. Aktag, J. Seidel, J. Mater. Sci. 26 5987–5993 (2015)

    Google Scholar 

  13. V. Ioannou-Sougleridis, V. Constantoudis, M. Alexe, R. Scholz, G. Vellianitis, A. Dimoulas, Thin Solid Films 468, 303–309 (2004)

    Article  Google Scholar 

  14. S.J. Park, D.P. Norton, Thin Solid Films 510, 143–147 (2006)

    Article  Google Scholar 

  15. A. Pandey, V. Kumar, R.E. Kroon, H.C. Swart, J. Alloys Compd. 672, 190–196 (2016)

    Article  Google Scholar 

  16. S.Q. Zhang, R.F. Xiao, J. Appl. Phys. 83, 3842–3848 (1998)

    Article  Google Scholar 

  17. P. Lei, W. Leroy, B. Dai, J.Q. Zhu, X.T. Chen, J.C. Han, D. Depla, Surf. Coat. Technol. 276 39–46 (2015)

    Article  Google Scholar 

  18. S. Barve, M. Deo, R. Kar, N. Sreenivasan, R. Kishore, A. Biswas, B. Bhanage, M. Rao, L.M. Gantayet, D. Patil, Plasma Process. Polym. 8 740–749 (2011)

    Article  Google Scholar 

  19. H.J. Quah, K.Y. Cheong, J. Exp. Nanosci. 10, 19–28 (2013)

    Article  Google Scholar 

  20. X.J. Wang, L.D. Zhang, J.P. Zhang, G. He, M. Liu, L.Q. Zhu, Mater. Lett 62, 4235–4237 (2008)

    Article  Google Scholar 

  21. M.H. Cho, D.H. Ko, K. Jeong, S.W. Whangbo, C.N. Whang, S.C. Choi, S.J. Cho, Thin Solid Films 349, 266–269 (1999)

    Article  Google Scholar 

  22. D.G. Lim, J.H. Lee, J. Yi, J. Korean Phys. Soc. 40, 167–171 (2002)

    Google Scholar 

  23. A. Monshi, M.R. Foroughi, M.R. Monshi, World J. Nano Sci. Eng. 02, 154–160 (2012)

    Article  Google Scholar 

  24. G. Bilir, G. Ozen, J. Collins, B. Di Bartolo, Appl. Phys. A 115 263–273 (2014)

    Article  Google Scholar 

  25. H. Malkas, S. Kaya, E. Yilmaz, J. Electron. Mater. 43 4011–4017 (2014)

    Article  Google Scholar 

  26. H.J. Quah, K.Y. Cheong, Mater. Chem. Phys. 130, 1007–1015 (2011)

    Article  Google Scholar 

  27. E.J. Rubio, V.V. Atuchin, V.N. Kruchinin, L.D. Pokrovsky, I.P. Prosvirin, C.V. Ramana, J. Phys. Chem. C 118, 13644–13651 (2014)

    Article  Google Scholar 

  28. I.Z. Mitrovic, M. Althobaiti, A.D. Weerakkody, V.R. Dhanak, W.M. Linhart, T.D. Veal, N. Sedghi, S. Hall, P.R. Chalker, D. Tsoutsou, A. Dimoulas, J. Appl. Phys. 115, 114102 (2014)

    Article  Google Scholar 

  29. R. Lopez, R. Gomez, J. Sol-Gel Sci. Technol. 61 1–7 (2012)

    Article  Google Scholar 

  30. A.B. Murphy, Sol. Energy Mater. Sol. C 91 1326–1337 (2007)

    Article  Google Scholar 

  31. J. Zhu, Z.G. Liu, Appl. Phys. A 78, 741–744 (2004)

    Article  Google Scholar 

  32. G. Shankar, P.S. Joseph, M.Y. Suvakin, A. Sebastiyan, Opt. Commun. 295, 134–139 (2013)

    Article  Google Scholar 

  33. S.M. Sze, Physics of Semiconductor Devices (New York, Wiley, 1981)

    Google Scholar 

  34. S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University, Cambridge, 1998

    Book  Google Scholar 

  35. I. Yucedag, A. Kaya, S. Altindal, I. Uslu, Chin. Phys. B 23 (2014)

  36. S.K. S. Abubakar, H. Karacali, E. Yilmaz, Sens. Actuators A 258 44–48 (2017)

    Article  Google Scholar 

  37. R. Lok, S. Kaya, H. Kacali, E. Yilmaz, J. Mater. Sci. 27 13154–13160 (2016)

    Google Scholar 

  38. P. Laha, S.S. Dahiwale, I. Banerjee, S.K. Pabi, D. Kimd, P.K. Barhai, V.N. Bhoraskar, S.K. Mahapatra, Nucl. Instrum. Methods B 269 2740–2744 (2011)

    Article  Google Scholar 

  39. A. Srivastava, R.K. Nahar, C.K. Sarkar, W.P. Singh, Y. Malhotra, Microelectron. Reliab. 51, 751–755 (2011)

    Article  Google Scholar 

  40. M. Nath, A. Roy, J. Mater. Sci. 26 9107–9116 (2015)

    Google Scholar 

  41. A. Bansal, P. Srivastava, B.R. Singh, J. Mater. Sci. 26 639–645 (2015)

    Google Scholar 

  42. A.C. Rastogi, R.N. Sharma, Semicond. Sci. Technol. 16 641–650 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Abant Izzet Baysal University under Contract Number: AIBU, BAP. 2015.03.02.870, and BAP. 2014.03.02.722 and the Ministry of Development of Turkey under Contract Numbers: 2016K121110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abubakar, S., Kaya, S., Aktag, A. et al. Yttrium oxide nanostructured thin films deposited by radio frequency sputtering: the annealing optimizations and correlations between structural, morphological, optical and electrical properties. J Mater Sci: Mater Electron 28, 13920–13927 (2017). https://doi.org/10.1007/s10854-017-7241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7241-7

Navigation