Skip to main content
Log in

Frequency dependence of dielectric properties of ex situ MgB2 bulks

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, frequency dependent electrical properties of ex situ polycrystalline MgB2 sintered at 650–850 °C were investigated. Dielectric permittivity (ε′, ε″), dielectric loss (tan δ), alternating current (AC) conductivity (σac) as a function of frequency (100 Hz–10 MHz) were measured at room temperature. The X-ray diffraction (XRD) and grain morphology were analysed and correlated to the findings in dielectric properties. Due to weakly coupled grains and presence of high fraction of oxides, positive real dielectric permittivity was measured for the ex situ samples as compared with the negative real dielectric permittivity shown by the in situ MgB2. Nevertheless, the samples sintered at higher temperature showed improved grain connectivity as reflected by the higher AC conductivity and dielectric loss. The semicircle observed in the complex impedance plots together with the combined spectroscopy plots indicates that the electrical behavior of the ex situ samples is mainly due to the bulk and grain boundary responses as opposed to the sole bulk response of the in situ MgB2. The modelled equivalent circuit also suggests the presence of insulating grain boundary barrier (due to the oxide phases) next to the conducting bulk in the ex situ samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001)

    Article  Google Scholar 

  2. B.A. Glowacki, M. Majoros, M. Eisterer, S. Toenies, H.W. Weber, M. Fukutomi, K. Komori, K. Togano, Phys. C 387, 153 (2003)

    Article  Google Scholar 

  3. A. Yamamoto, H. Tanaka, J. Shimoyama, H. Ogino, K. Kishio, T. Matsushita, Jpn. J. Appl. Phys. 51, 10105 (2012)

    Article  Google Scholar 

  4. A.V Pan, S. Zhou, H. Liu, S. Dou, Supercond. Sci. Technol. 16, 639 (2003)

    Article  Google Scholar 

  5. J. Jiang, B.J. Senkowicz, D.C. Larbalestier, E.E. Hellstrom, Supercond. Sci. Technol. 19, L33 (2006)

    Article  Google Scholar 

  6. R.F. Klie, J.C. Idrobo, N.D. Browning, K.A. Regan, N.S. Rogado, R.J. Cava, Appl. Phys. Lett. 79, 1837 (2001)

    Article  Google Scholar 

  7. S.K. Chen, K.A. Yates, M.G. Blamire, J.L. MacManus-Driscoll, Supercond. Sci. Technol. 18, 1473 (2005)

    Article  Google Scholar 

  8. Z.-K. Liu, D.G. Schlom, Q. Li, X.X. Xi, Appl. Phys. Lett. 78, 3678 (2001)

    Article  Google Scholar 

  9. A. Malagoli, V. Braccini, M. Tropeano, M. Vignolo, C. Bernini, C. Fanciulli, G. Romano, M. Putti, C. Ferdeghini, E. Mossang, A. Polyanskii, D.C. Larbalestier, J. Appl. Phys. 104, 103908 (2008)

    Article  Google Scholar 

  10. T. Nakane, H. Kumakura, IEEE Trans. Appl. Supercond. 19, 2793 (2009)

    Article  Google Scholar 

  11. P. Kováč, I. Hušek, M. Kulich, T. Melišek, K. Hušeková, E. Dobročka, Phys. C 470, 340 (2010)

    Article  Google Scholar 

  12. H. Fujii, K. Ozawa, Phys. C 470, 326 (2010)

    Article  Google Scholar 

  13. H. Tanaka, A. Yamamoto, J. Shimoyama, H. Ogino, K. Kishio, Supercond. Sci. Technol. 25, 115022 (2012)

    Article  Google Scholar 

  14. V. Braccini, D. Nardelli, R. Penco, G. Grasso, Phys. C 456, 209 (2007)

    Article  Google Scholar 

  15. P. Kováč, M. Reissner, T. Melišek, I. Hušek, S. Mohammad, J. Appl. Phys. 106, 13910 (2009)

    Article  Google Scholar 

  16. A. Gupta, A. Kumar, A.V. Narlikar, Supercond. Sci. Technol. 22, 105005 (2009)

    Article  Google Scholar 

  17. M. Eisterer, J. Emhofer, S. Sorta, M. Zehetmayer, H.W. Weber, Supercond. Sci. Technol. 22, 34016 (2009)

    Article  Google Scholar 

  18. P. Kováč, M. Kulich, W. Haessler, M. Hermann, T. Melišek, M. Reissner, Phys. C 477, 20 (2012)

    Article  Google Scholar 

  19. T.S.J. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  Google Scholar 

  20. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  21. Agilent Technologies, Meas. Tech. 2007, 32 (2005)

    Google Scholar 

  22. C.C. Wang, C. Wang, R. Zeng, S.X. Dou, J. Appl. Phys. 108, 23901 (2010)

    Article  Google Scholar 

  23. Y. Cui, L. Zhang, R. Wang, Phys. C 442, 29 (2006)

    Article  Google Scholar 

  24. K.Y. Tan, K.B. Tan, K.P. Lim, H. Jumiah, S.A. Halim, S.K. Chen, Ceram. Int. 42, 10266 (2016)

    Article  Google Scholar 

  25. J.M. Rowell, Supercond. Sci. Technol. 16, R17 (2003)

    Article  Google Scholar 

  26. M. Kambara, N.H. Babu, E.S. Sadki, J.R. Cooper, H. Minami, D.A. Cardwell, A.M. Campbell, I.H. Inoue, Supercond. Sci. Technol. 14, L5 (2001)

    Article  Google Scholar 

  27. M.-O. Mun, Y.J. Kim, Y. Park, J.H. Kim, S.H. Moon, H.N. Lee, H.G. Kim, B. Oh, J. Supercond. Nov. Magn. 15, 475 (2002)

    Article  Google Scholar 

  28. J.J. Tu, G.L. Carr, V. Perebeinos, C.C. Homes, M. Strongin, P.B. Allen, W.N. Kang, E.-M. Choi, H.-J. Kim, S.-I. Lee, Phys. Rev. Lett. 87, 277001 (2001)

    Article  Google Scholar 

  29. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Somerset, 2004)

    Google Scholar 

  30. V. Guritanu, A.B. Kuzmenko, D. van der Marel, S.M. Kazakov, N.D. Zhigadlo, J. Karpinski, Phys. Rev. B 73, 104509 (2006)

    Article  Google Scholar 

  31. N.A. Khan, M. Mumtaz, A.A. Khurram, J. Appl. Phys. 104, 33916 (2008)

    Article  Google Scholar 

  32. A.G.U. Perera, W.Z. Shen, M. Ershov, H.C. Liu, M. Buchanan, W.J. Schaff, Appl. Phys. Lett. 74, 3167 (1999)

    Article  Google Scholar 

  33. C.C. Wang, G.Z. Liu, M. He, H.B. Lu, Appl. Phys. Lett. 92, 52905 (2008)

    Article  Google Scholar 

  34. J. Bisquert, G. Garcia-Belmonte, Á. H.J. Pitarch, Bolink, Chem. Phys. Lett. 422, 184 (2006)

    Article  Google Scholar 

  35. M. Mumtaz, N.A. Khan, S. Khan, J. Appl. Phys. 111, 13920 (2012)

    Article  Google Scholar 

  36. V. Kytin, T. Dittrich, F. Koch, E. Lebedev, Appl. Phys. Lett. 79, 108 (2001)

    Article  Google Scholar 

  37. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    Google Scholar 

  38. S.K. Chen, J.L. MacManus-Driscoll, Supercond. Sci. Technol. 22, 65009 (2009)

    Article  Google Scholar 

  39. D. Yang, H. Sun, H. Lu, Y. Guo, X. Li, X. Hu, Supercond. Sci. Technol. 16, 576 (2003)

    Article  Google Scholar 

  40. S.K. Chen, A. Serquis, G. Serrano, K.A. Yates, M.G. Blamire, D. Guthrie, J. Cooper, H. Wang, S. Margadonna, J.L. MacManus-Driscoll, Adv. Funct. Mater. 18, 113 (2008)

    Article  Google Scholar 

  41. Y. Guo, W. Zhang, D. Yang, R.-L. Yao, J. Am. Ceram. Soc. 95, 754 (2012)

    Article  Google Scholar 

  42. K.Y. Tan, K.L. Tan, K.B. Tan, K.P. Lim, S.A. Halim, S.K. Chen, J. Supercond. Nov. Magn. 24, 2025 (2011)

    Article  Google Scholar 

  43. A. Kario, R. Nast, W. Häßler, C. Rodig, C. Mickel, W. Goldacker, B. Holzapfel, L. Schultz, Supercond. Sci. Technol. 24, 75011 (2011)

    Article  Google Scholar 

  44. M. Vignolo, G. Romano, E. Bellingeri, A. Martinelli, D. Nardelli, A. Bitchkov, C. Bernini, A. Malagoli, V. Braccini, C. Ferdeghini, Supercond. Sci. Technol. 24, 65014 (2011)

    Article  Google Scholar 

  45. C.B. Eom, M.K. Lee, J.H. Choi, L.J. Belenky, X. Song, L.D. Cooley, M.T. Naus, S. Patnaik, J. Jiang, M. Rikel, A. Polyanskii, A. Gurevich, X.Y. Cai, S.D. Bu, S.E. Babcock, E.E. Hellstrom, D.C. Larbalestier, N. Rogado, K.A. Regan, M.A. Hayward, T. He, J.S. Slusky, K. Inumaru, M.K. Haas, R.J. Cava, Nature 411, 558 (2001)

    Article  Google Scholar 

  46. X.Z. Liao, A.C. Serquis, Y.T. Zhu, J.Y. Huang, D.E. Peterson, F.M. Mueller, H.F. Xu, Appl. Phys. Lett. 80, 4398 (2002)

    Article  Google Scholar 

  47. M. Dhallé, P. Toulemonde, C. Beneduce, N. Musolino, M. Decroux, R. Flükiger, Phys. C 363, 155 (2001)

    Article  Google Scholar 

  48. H. Yang, H. Wang, F. Xiang, X. Yao, J. Am. Ceram. Soc. 92, 2005 (2009)

    Article  Google Scholar 

  49. F. Kremer, A. Schönhals (eds.), Broadband Dielectric Spectroscopy. (Springer, Berlin, 2003)

    Google Scholar 

  50. Y.S. Cho, K.H. Yoon, in Handbook of Advanced Electronic and Photonic Materials and Devices, ed. by H. Singh Nalwa (Academic Press, New York, 2001), pp. 175–199

  51. G. Heller, B Boron Compounds. (Springer, Berlin, 1993)

    Book  Google Scholar 

  52. X. Yin, L. Kong, L. Zhang, L. Cheng, N. Travitzky, P. Greil, Int. Mater. Rev. 59, 326–355 (2014)

    Google Scholar 

  53. M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, J. Mater. Chem. A 2, 16403 (2014)

    Article  Google Scholar 

  54. A. Verma, T. Goel, R. Mendiratta, M. Alam, Mater. Sci. Eng. B 60, 156 (1999)

    Article  Google Scholar 

  55. Ş. Çavdar, H. Koralay, N. Tuğluoğlu, A. Günen, Supercond. Sci. Technol. 18, 1204 (2005)

    Article  Google Scholar 

  56. A.K. Jonscher, J. Phys. D 32, R57 (1999)

    Article  Google Scholar 

  57. E.A. Patterson, S. Kwon, C.-C. Huang, D.P. Cann, Appl. Phys. Lett. 87, 182911 (2005)

    Article  Google Scholar 

  58. B. Sipos, N. Barisic, R. Gaal, L. Forró, J. Karpinski, F. Rullier-Albenque, Phys. Rev. B 76, 132504 (2007)

    Article  Google Scholar 

  59. A.K. Jonscher, J. Mater. Sci. 16, 2037 (1981)

    Article  Google Scholar 

  60. J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)

    Article  Google Scholar 

  61. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

  62. M.P. Chon, K.B. Tan, C.C. Khaw, Z. Zainal, Y.H. Taufiq-Yap, P.Y. Tan, Ceram. Int. 38, 4253 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education Malaysia through the Fundamental Research Grant Scheme (01-02-12-1346FR). The authors also thank Universiti Putra Malaysia for financial support through the Putra Grant (GP-I/20149440100). KYT would like to acknowledge the financial assistance from the Ministry of Education Malaysia under the MyBrain15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, K.Y., Tan, K.B., Lim, K.P. et al. Frequency dependence of dielectric properties of ex situ MgB2 bulks. J Mater Sci: Mater Electron 28, 13391–13400 (2017). https://doi.org/10.1007/s10854-017-7176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7176-z

Navigation